ardupilot/ArduPlane/mode_guided.cpp

161 lines
6.4 KiB
C++
Raw Normal View History

#include "mode.h"
#include "Plane.h"
bool ModeGuided::_enter()
{
plane.guided_throttle_passthru = false;
/*
when entering guided mode we set the target as the current
location. This matches the behaviour of the copter code
*/
Location loc{plane.current_loc};
#if HAL_QUADPLANE_ENABLED
if (plane.quadplane.guided_mode_enabled()) {
/*
if using Q_GUIDED_MODE then project forward by the stopping distance
*/
loc.offset_bearing(degrees(ahrs.groundspeed_vector().angle()),
plane.quadplane.stopping_distance());
}
#endif
// set guided radius to WP_LOITER_RAD on mode change.
active_radius_m = 0;
plane.set_guided_WP(loc);
return true;
}
void ModeGuided::update()
{
#if HAL_QUADPLANE_ENABLED
if (plane.auto_state.vtol_loiter && plane.quadplane.available()) {
plane.quadplane.guided_update();
return;
}
#endif
// Received an external msg that guides roll in the last 3 seconds?
if (plane.guided_state.last_forced_rpy_ms.x > 0 &&
millis() - plane.guided_state.last_forced_rpy_ms.x < 3000) {
plane.nav_roll_cd = constrain_int32(plane.guided_state.forced_rpy_cd.x, -plane.roll_limit_cd, plane.roll_limit_cd);
plane.update_load_factor();
#if AP_PLANE_OFFBOARD_GUIDED_SLEW_ENABLED
// guided_state.target_heading is radians at this point between -pi and pi ( defaults to -4 )
// This function is used in Guided and AvoidADSB, check for guided
} else if ((plane.control_mode == &plane.mode_guided) && (plane.guided_state.target_heading_type != GUIDED_HEADING_NONE) ) {
uint32_t tnow = AP_HAL::millis();
float delta = (tnow - plane.guided_state.target_heading_time_ms) * 1e-3f;
plane.guided_state.target_heading_time_ms = tnow;
float error = 0.0f;
if (plane.guided_state.target_heading_type == GUIDED_HEADING_HEADING) {
error = wrap_PI(plane.guided_state.target_heading - AP::ahrs().get_yaw());
} else {
Vector2f groundspeed = AP::ahrs().groundspeed_vector();
error = wrap_PI(plane.guided_state.target_heading - atan2f(-groundspeed.y, -groundspeed.x) + M_PI);
}
float bank_limit = degrees(atanf(plane.guided_state.target_heading_accel_limit/GRAVITY_MSS)) * 1e2f;
bank_limit = MIN(bank_limit, plane.roll_limit_cd);
// push error into AC_PID
const float desired = plane.g2.guidedHeading.update_error(error, delta, plane.guided_state.target_heading_limit);
// Check for output saturation
plane.guided_state.target_heading_limit = fabsf(desired) >= bank_limit;
plane.nav_roll_cd = constrain_int32(desired, -bank_limit, bank_limit);
plane.update_load_factor();
#endif // AP_PLANE_OFFBOARD_GUIDED_SLEW_ENABLED
} else {
plane.calc_nav_roll();
}
if (plane.guided_state.last_forced_rpy_ms.y > 0 &&
millis() - plane.guided_state.last_forced_rpy_ms.y < 3000) {
plane.nav_pitch_cd = constrain_int32(plane.guided_state.forced_rpy_cd.y, plane.pitch_limit_min*100, plane.aparm.pitch_limit_max.get()*100);
} else {
plane.calc_nav_pitch();
}
// Throttle output
if (plane.guided_throttle_passthru) {
// manual passthrough of throttle in fence breach
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, plane.get_throttle_input(true));
} else if (plane.aparm.throttle_cruise > 1 &&
plane.guided_state.last_forced_throttle_ms > 0 &&
millis() - plane.guided_state.last_forced_throttle_ms < 3000) {
// Received an external msg that guides throttle in the last 3 seconds?
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, plane.guided_state.forced_throttle);
} else {
// TECS control
plane.calc_throttle();
}
}
void ModeGuided::navigate()
{
plane.update_loiter(active_radius_m);
}
2021-09-27 16:28:39 -03:00
bool ModeGuided::handle_guided_request(Location target_loc)
{
// add home alt if needed
if (target_loc.relative_alt) {
target_loc.alt += plane.home.alt;
target_loc.relative_alt = 0;
2021-09-27 16:28:39 -03:00
}
plane.set_guided_WP(target_loc);
2021-09-27 16:28:39 -03:00
return true;
}
void ModeGuided::set_radius_and_direction(const float radius, const bool direction_is_ccw)
{
// constrain to (uint16_t) range for update_loiter()
active_radius_m = constrain_int32(fabsf(radius), 0, UINT16_MAX);
plane.loiter.direction = direction_is_ccw ? -1 : 1;
}
void ModeGuided::update_target_altitude()
{
#if AP_PLANE_OFFBOARD_GUIDED_SLEW_ENABLED
// target altitude can be negative (e.g. flying below home altitude from the top of a mountain)
if (((plane.guided_state.target_alt_time_ms != 0) || plane.guided_state.target_location.alt != -1 )) { // target_alt now defaults to -1, and _time_ms defaults to zero.
// offboard altitude demanded
uint32_t now = AP_HAL::millis();
float delta = 1e-3f * (now - plane.guided_state.target_alt_time_ms);
plane.guided_state.target_alt_time_ms = now;
// determine delta accurately as a float
float delta_amt_f = delta * plane.guided_state.target_alt_rate;
// then scale x100 to match last_target_alt and convert to a signed int32_t as it may be negative
int32_t delta_amt_i = (int32_t)(100.0 * delta_amt_f);
// To calculate the required velocity (up or down), we need to target and current altitudes in the target frame
const Location::AltFrame target_frame = plane.guided_state.target_location.get_alt_frame();
int32_t target_alt_previous_cm;
if (plane.current_loc.initialised() && plane.guided_state.target_location.initialised() &&
plane.current_loc.get_alt_cm(target_frame, target_alt_previous_cm)) {
// create a new interim target location that that takes current_location and moves delta_amt_i in the right direction
int32_t temp_alt_cm = constrain_int32(plane.guided_state.target_location.alt, target_alt_previous_cm - delta_amt_i, target_alt_previous_cm + delta_amt_i);
Location temp_location = plane.guided_state.target_location;
temp_location.set_alt_cm(temp_alt_cm, target_frame);
// incrementally step the altitude towards the target
plane.set_target_altitude_location(temp_location);
}
} else
#endif // AP_PLANE_OFFBOARD_GUIDED_SLEW_ENABLED
{
Mode::update_target_altitude();
}
}