ardupilot/libraries/AP_PerfMon/AP_PerfMon.cpp

217 lines
5.8 KiB
C++
Raw Normal View History

2012-12-20 00:45:04 -04:00
#include "AP_PerfMon.h"
extern const AP_HAL::HAL& hal;
2012-12-20 00:45:04 -04:00
// static class variable definitions
uint8_t AP_PerfMon::nextFuncNum;
char AP_PerfMon::functionNames[PERFMON_MAX_FUNCTIONS][PERFMON_FUNCTION_NAME_LENGTH];
uint32_t AP_PerfMon::time[PERFMON_MAX_FUNCTIONS];
uint32_t AP_PerfMon::maxTime[PERFMON_MAX_FUNCTIONS];
uint32_t AP_PerfMon::numCalls[PERFMON_MAX_FUNCTIONS];
uint32_t AP_PerfMon::allStartTime;
uint32_t AP_PerfMon::allEndTime;
AP_PerfMon* AP_PerfMon::lastCreated = NULL;
bool AP_PerfMon::_enabled = true;
// constructor
AP_PerfMon::AP_PerfMon(uint8_t funcNum) : _funcNum(funcNum), _time_this_iteration(0)
{
// exit immediately if we are disabled
if( !_enabled ) {
return;
}
// check global start time
if( allStartTime == 0 ) {
allStartTime = hal.scheduler->micros();
2012-12-20 00:45:04 -04:00
}
// stop recording time from parent
_parent = lastCreated; // add pointer to parent
if( _parent != NULL ) {
_parent->stop();
}
// record myself as the last created instance
lastCreated = this;
numCalls[_funcNum]++; // record that this function has been called
start(); // start recording time spent in this function
}
// destructor
AP_PerfMon::~AP_PerfMon()
{
// exit immediately if we are disabled
if( !_enabled ) {
return;
}
stop(); // stop recording time spent in this function
lastCreated = _parent; // make my parent the last created instance
// calculate max time spent in this function
if( _time_this_iteration > maxTime[_funcNum] ) {
maxTime[_funcNum] = _time_this_iteration;
}
// restart recording time for parent
if( _parent != NULL )
_parent->start();
}
// record function name in static list
uint8_t AP_PerfMon::recordFunctionName(const char funcName[])
{
uint8_t nextNum = nextFuncNum++;
uint8_t i;
// clear existing function name (if any)
functionNames[nextNum][0] = 0;
// store function name
for( i=0; i<PERFMON_FUNCTION_NAME_LENGTH-1 && funcName[i] != 0; i++ ) {
functionNames[nextNum][i] = funcName[i];
}
functionNames[nextNum][i] = 0;
return nextNum;
}
// stop recording time
void AP_PerfMon::start()
{
_startTime = hal.scheduler->micros(); // start recording time spent in this function
2012-12-20 00:45:04 -04:00
}
// stop recording time
void AP_PerfMon::stop()
{
uint32_t temp_time = hal.scheduler->micros()-_startTime;
2012-12-20 00:45:04 -04:00
_time_this_iteration += temp_time;
time[_funcNum] += temp_time;
}
// ClearAll - clears all data from static members
void AP_PerfMon::ClearAll()
{
uint8_t i;
AP_PerfMon *p = lastCreated;
for(i=0; i<PERFMON_MAX_FUNCTIONS; i++) {
time[i] = 0; // reset times
numCalls[i] = 0; // reset num times called
maxTime[i] = 0; // reset maximum time
}
// reset start time to now
allStartTime = hal.scheduler->micros();
2012-12-20 00:45:04 -04:00
allEndTime = 0;
// reset start times of any active counters
while( p != NULL ) {
p->_startTime = allStartTime;
p = p->_parent;
}
}
// DisplayResults - displays table of timing results
void AP_PerfMon::DisplayResults()
{
uint8_t i,j,changed;
float hz;
float pct;
uint32_t totalTime;
uint32_t avgTime;
uint32_t sumOfTime = 0;
uint32_t unExplainedTime;
uint8_t order[PERFMON_MAX_FUNCTIONS];
bool blocking_writes;
// record end time
if( allEndTime == 0 ) {
allEndTime = hal.scheduler->micros();
2012-12-20 00:45:04 -04:00
}
// turn off any time recording
if( lastCreated != NULL ) {
lastCreated->stop();
}
_enabled = false;
// reorder results
for(i=0; i<nextFuncNum; i++) {
order[i] = i;
}
changed=0;
do{
changed = 0;
for(i=0; i<nextFuncNum-1; i++)
if(time[order[i]]<time[order[i+1]]) {
j = order[i];
order[i] = order[i+1];
order[i+1] = j;
changed = 1;
}
}while(changed != 0);
// calculate time elapsed
totalTime = allEndTime - allStartTime;
// ensure serial is blocking
//blocking_writes = hal.console->get_blocking_writes();
//hal.console->set_blocking_writes(true);
2012-12-20 00:45:04 -04:00
// print table of results
hal.console->printf_P(PSTR("\nPerfMon elapsed:%lu(ms)\n"),(unsigned long)totalTime/1000);
hal.console->printf_P(PSTR("Fn:\t\tcpu\ttot(ms)\tavg(ms)\tmax(ms)\t#calls\tHz\n"));
2012-12-20 00:45:04 -04:00
for( i=0; i<nextFuncNum; i++ ) {
j=order[i];
sumOfTime += time[j];
// calculate average execution time
if( numCalls[j] > 0 ) {
avgTime = time[j] / numCalls[j];
}else{
avgTime = 0;
}
hz = numCalls[j]/(totalTime/1000000);
pct = ((float)time[j] / (float)totalTime) * 100.0;
hal.console->printf_P(PSTR("%-10s\t%4.2f\t%lu\t%4.3f\t%4.3f\t%lu\t%4.1f\n"),
2012-12-20 00:45:04 -04:00
functionNames[j],
pct,
(unsigned long)time[j]/1000,
(float)avgTime/1000.0,
(float)maxTime[j]/1000.0,
numCalls[j],
hz);
}
// display unexplained time
if( sumOfTime >= totalTime ) {
unExplainedTime = 0;
} else {
unExplainedTime = totalTime - sumOfTime;
}
pct = ((float)unExplainedTime / (float)totalTime) * 100.0;
hal.console->printf_P(PSTR("unexpl:\t\t%4.2f\t%lu\n"),pct,(unsigned long)unExplainedTime/1000);
2012-12-20 00:45:04 -04:00
// restore to blocking writes if necessary
//hal.console->set_blocking_writes(blocking_writes);
2012-12-20 00:45:04 -04:00
// turn back on any time recording
if( lastCreated != NULL ) {
lastCreated->start();
}
_enabled = true;
}
// DisplayAndClear - will display results after this many milliseconds. should be called regularly
void AP_PerfMon::DisplayAndClear(uint32_t display_after_seconds)
{
if( (hal.scheduler->micros() - allStartTime) > (uint32_t)(display_after_seconds * 1000000) ) {
2012-12-20 00:45:04 -04:00
DisplayResults();
ClearAll();
}
}