ardupilot/libraries/AP_GPS/AP_GPS_SBF.cpp

450 lines
16 KiB
C++
Raw Normal View History

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
//
// Septentrio GPS driver for ArduPilot.
// Code by Michael Oborne
//
#include "AP_GPS.h"
#include "AP_GPS_SBF.h"
#include <DataFlash/DataFlash.h>
#include <GCS_MAVLink/GCS.h>
extern const AP_HAL::HAL& hal;
#define SBF_DEBUGGING 0
#if SBF_DEBUGGING
# define Debug(fmt, args ...) \
do { \
hal.console->printf("%s:%d: " fmt "\n", \
__FUNCTION__, __LINE__, \
## args); \
hal.scheduler->delay(1); \
} while(0)
#else
# define Debug(fmt, args ...)
#endif
#define SBF_EXCESS_COMMAND_BYTES 5 // 2 start bytes + validity byte + space byte + endline byte
2017-09-21 22:22:22 -03:00
#define RX_ERROR_MASK (SOFTWARE | \
CONGESTION | \
MISSEDEVENT | \
CPUOVERLOAD | \
INVALIDCONFIG | \
OUTOFGEOFENCE)
AP_GPS_SBF::AP_GPS_SBF(AP_GPS &_gps, AP_GPS::GPS_State &_state,
AP_HAL::UARTDriver *_port) :
AP_GPS_Backend(_gps, _state, _port)
2015-12-07 08:47:51 -04:00
{
sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE1;
2015-12-07 08:47:51 -04:00
port->write((const uint8_t*)_port_enable, strlen(_port_enable));
_config_last_ack_time = AP_HAL::millis();
}
// Process all bytes available from the stream
//
bool
AP_GPS_SBF::read(void)
{
bool ret = false;
uint32_t available_bytes = port->available();
for (uint32_t i = 0; i < available_bytes; i++) {
uint8_t temp = port->read();
ret |= parse(temp);
}
if (gps._auto_config != AP_GPS::GPS_AUTO_CONFIG_DISABLE) {
if (_init_blob_index < ARRAY_SIZE(_initialisation_blob)) {
uint32_t now = AP_HAL::millis();
const char *init_str = _initialisation_blob[_init_blob_index];
if (now > _init_blob_time) {
if (now > _config_last_ack_time + 2500) {
// try to enable input on the GPS port if we have not made progress on configuring it
Debug("SBF Sending port enable");
port->write((const uint8_t*)_port_enable, strlen(_port_enable));
_config_last_ack_time = now;
} else {
Debug("SBF sending init string: %s", init_str);
port->write((const uint8_t*)init_str, strlen(init_str));
}
_init_blob_time = now + 1000;
}
} else if (gps._raw_data == 2) { // only manage disarm/rearms when the user opts into it
if (hal.util->get_soft_armed()) {
_has_been_armed = true;
} else if (_has_been_armed && (RxState & SBF_DISK_MOUNTED)) {
// since init is done at this point and unmounting should be rate limited,
// take over the _init_blob_time variable
uint32_t now = AP_HAL::millis();
if (now > _init_blob_time) {
unmount_disk();
_init_blob_time = now + 1000;
}
}
}
}
return ret;
}
bool
AP_GPS_SBF::parse(uint8_t temp)
{
switch (sbf_msg.sbf_state)
{
default:
case sbf_msg_parser_t::PREAMBLE1:
if (temp == SBF_PREAMBLE1) {
sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE2;
sbf_msg.read = 0;
}
break;
case sbf_msg_parser_t::PREAMBLE2:
if (temp == SBF_PREAMBLE2) {
sbf_msg.sbf_state = sbf_msg_parser_t::CRC1;
} else if (temp == 'R') {
Debug("SBF got a response\n");
sbf_msg.sbf_state = sbf_msg_parser_t::COMMAND_LINE;
}
else
{
sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE1;
}
break;
case sbf_msg_parser_t::CRC1:
sbf_msg.crc = temp;
sbf_msg.sbf_state = sbf_msg_parser_t::CRC2;
break;
case sbf_msg_parser_t::CRC2:
sbf_msg.crc += (uint16_t)(temp << 8);
sbf_msg.sbf_state = sbf_msg_parser_t::BLOCKID1;
break;
case sbf_msg_parser_t::BLOCKID1:
sbf_msg.blockid = temp;
sbf_msg.sbf_state = sbf_msg_parser_t::BLOCKID2;
break;
case sbf_msg_parser_t::BLOCKID2:
sbf_msg.blockid += (uint16_t)(temp << 8);
sbf_msg.sbf_state = sbf_msg_parser_t::LENGTH1;
break;
case sbf_msg_parser_t::LENGTH1:
sbf_msg.length = temp;
sbf_msg.sbf_state = sbf_msg_parser_t::LENGTH2;
break;
case sbf_msg_parser_t::LENGTH2:
sbf_msg.length += (uint16_t)(temp << 8);
sbf_msg.sbf_state = sbf_msg_parser_t::DATA;
if (sbf_msg.length % 4 != 0) {
sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE1;
Debug("bad packet length=%u\n", (unsigned)sbf_msg.length);
}
if (sbf_msg.length < 8) {
Debug("bad packet length=%u\n", (unsigned)sbf_msg.length);
sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE1;
crc_error_counter++; // this is a probable buffer overflow, but this
// indicates not enough bytes to do a crc
break;
}
break;
case sbf_msg_parser_t::DATA:
if (sbf_msg.read < sizeof(sbf_msg.data)) {
sbf_msg.data.bytes[sbf_msg.read] = temp;
}
sbf_msg.read++;
if (sbf_msg.read >= (sbf_msg.length - 8)) {
if (sbf_msg.read > sizeof(sbf_msg.data)) {
// not interested in these large messages
sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE1;
break;
}
uint16_t crc = crc16_ccitt((uint8_t*)&sbf_msg.blockid, 2, 0);
crc = crc16_ccitt((uint8_t*)&sbf_msg.length, 2, crc);
crc = crc16_ccitt((uint8_t*)&sbf_msg.data, sbf_msg.length - 8, crc);
sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE1;
if (sbf_msg.crc == crc) {
return process_message();
} else {
Debug("crc fail\n");
crc_error_counter++;
}
}
break;
case sbf_msg_parser_t::COMMAND_LINE:
if (sbf_msg.read < (sizeof(sbf_msg.data) - 1)) {
sbf_msg.data.bytes[sbf_msg.read] = temp;
} else {
// we don't have enough buffer to compare the commands
// most probable cause is that a user injected a longer command then
// we have buffer for, or it could be a corruption, either way we
// simply ignore the result
sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE1;
break;
}
sbf_msg.read++;
if (temp == '\n') {
sbf_msg.data.bytes[sbf_msg.read] = 0;
// received the result, lets assess it
if (sbf_msg.data.bytes[0] == ':') {
// valid command, determine if it was the one we were trying
// to send in the configuration sequence
if (_init_blob_index < ARRAY_SIZE(_initialisation_blob)) {
if (!strncmp(_initialisation_blob[_init_blob_index], (char *)(sbf_msg.data.bytes + 2),
sbf_msg.read - SBF_EXCESS_COMMAND_BYTES)) {
Debug("SBF Ack Command: %s\n", sbf_msg.data.bytes);
_init_blob_index++;
_config_last_ack_time = AP_HAL::millis();
} else {
Debug("SBF Ack command (unexpected): %s\n", sbf_msg.data.bytes);
}
}
} else {
// rejected command, send it out as a debug
Debug("SBF NACK Command: %s\n", sbf_msg.data.bytes);
}
// resume normal parsing
sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE1;
break;
}
break;
}
return false;
}
void
AP_GPS_SBF::log_ExtEventPVTGeodetic(const msg4007 &temp)
{
if (!should_df_log()) {
return;
}
uint64_t now = AP_HAL::micros64();
struct log_GPS_SBF_EVENT header = {
LOG_PACKET_HEADER_INIT(LOG_GPS_SBF_EVENT_MSG),
time_us:now,
TOW:temp.TOW,
WNc:temp.WNc,
Mode:temp.Mode,
Error:temp.Error,
Latitude:ToDeg(temp.Latitude),
Longitude:ToDeg(temp.Longitude),
Height:temp.Height,
Undulation:temp.Undulation,
Vn:temp.Vn,
Ve:temp.Ve,
Vu:temp.Vu,
COG:temp.COG
};
DataFlash_Class::instance()->WriteBlock(&header, sizeof(header));
}
bool
AP_GPS_SBF::process_message(void)
{
2017-05-24 18:39:47 -03:00
uint16_t blockid = (sbf_msg.blockid & 8191u);
Debug("BlockID %d", blockid);
2017-05-24 18:39:47 -03:00
switch (blockid) {
case ExtEventPVTGeodetic:
log_ExtEventPVTGeodetic(sbf_msg.data.msg4007u);
2017-05-24 18:39:47 -03:00
break;
case PVTGeodetic:
{
const msg4007 &temp = sbf_msg.data.msg4007u;
// Update time state
if (temp.WNc != 65535) {
state.time_week = temp.WNc;
state.time_week_ms = (uint32_t)(temp.TOW);
}
2015-12-07 08:47:51 -04:00
state.last_gps_time_ms = AP_HAL::millis();
2016-05-12 14:02:29 -03:00
// Update velocity state (don't use 2·10^10)
if (temp.Vn > -200000) {
state.velocity.x = (float)(temp.Vn);
state.velocity.y = (float)(temp.Ve);
state.velocity.z = (float)(-temp.Vu);
2015-12-07 08:47:51 -04:00
state.have_vertical_velocity = true;
float ground_vector_sq = state.velocity[0] * state.velocity[0] + state.velocity[1] * state.velocity[1];
state.ground_speed = (float)safe_sqrt(ground_vector_sq);
state.ground_course = wrap_360(degrees(atan2f(state.velocity[1], state.velocity[0])));
state.rtk_age_ms = temp.MeanCorrAge * 10;
// value is expressed as twice the rms error = int16 * 0.01/2
state.horizontal_accuracy = (float)temp.HAccuracy * 0.005f;
state.vertical_accuracy = (float)temp.VAccuracy * 0.005f;
2015-12-07 08:47:51 -04:00
state.have_horizontal_accuracy = true;
state.have_vertical_accuracy = true;
}
2017-12-04 20:48:36 -04:00
// Update position state (don't use -2·10^10)
if (temp.Latitude > -200000) {
state.location.lat = (int32_t)(temp.Latitude * RAD_TO_DEG_DOUBLE * (double)1e7);
state.location.lng = (int32_t)(temp.Longitude * RAD_TO_DEG_DOUBLE * (double)1e7);
state.location.alt = (int32_t)(((float)temp.Height - temp.Undulation) * 1e2f);
}
if (temp.NrSV != 255) {
state.num_sats = temp.NrSV;
}
Debug("temp.Mode=0x%02x\n", (unsigned)temp.Mode);
switch (temp.Mode & 15) {
case 0: // no pvt
state.status = AP_GPS::NO_FIX;
break;
case 1: // standalone
state.status = AP_GPS::GPS_OK_FIX_3D;
break;
case 2: // dgps
state.status = AP_GPS::GPS_OK_FIX_3D_DGPS;
break;
case 3: // fixed location
state.status = AP_GPS::GPS_OK_FIX_3D;
break;
case 4: // rtk fixed
2016-10-16 21:56:34 -03:00
state.status = AP_GPS::GPS_OK_FIX_3D_RTK_FIXED;
break;
case 5: // rtk float
2016-10-16 21:56:34 -03:00
state.status = AP_GPS::GPS_OK_FIX_3D_RTK_FLOAT;
break;
case 6: // sbas
2016-10-16 21:56:34 -03:00
state.status = AP_GPS::GPS_OK_FIX_3D_DGPS;
break;
case 7: // moving rtk fixed
2016-10-16 21:56:34 -03:00
state.status = AP_GPS::GPS_OK_FIX_3D_RTK_FIXED;
break;
case 8: // moving rtk float
2016-10-16 21:56:34 -03:00
state.status = AP_GPS::GPS_OK_FIX_3D_RTK_FLOAT;
break;
}
2017-05-24 18:39:47 -03:00
if ((temp.Mode & 64) > 0) { // gps is in base mode
state.status = AP_GPS::NO_FIX;
2017-05-24 18:39:47 -03:00
} else if ((temp.Mode & 128) > 0) { // gps only has 2d fix
state.status = AP_GPS::GPS_OK_FIX_2D;
2017-05-24 18:39:47 -03:00
}
return true;
}
2017-05-24 18:39:47 -03:00
case DOP:
{
const msg4001 &temp = sbf_msg.data.msg4001u;
2017-05-21 23:10:00 -03:00
state.hdop = temp.HDOP;
state.vdop = temp.VDOP;
2017-05-24 18:39:47 -03:00
break;
}
2017-05-24 18:39:47 -03:00
case ReceiverStatus:
{
const msg4014 &temp = sbf_msg.data.msg4014u;
RxState = temp.RxState;
2017-09-21 22:22:22 -03:00
RxError = temp.RxError;
2017-05-24 18:39:47 -03:00
break;
}
case VelCovGeodetic:
{
const msg5908 &temp = sbf_msg.data.msg5908u;
2017-12-04 20:48:36 -04:00
// select the maximum variance, as the EKF will apply it to all the columns in it's estimate
// FIXME: Support returning the covariance matrix to the EKF
2017-05-24 18:39:47 -03:00
float max_variance_squared = MAX(temp.Cov_VnVn, MAX(temp.Cov_VeVe, temp.Cov_VuVu));
if (is_positive(max_variance_squared)) {
state.have_speed_accuracy = true;
state.speed_accuracy = sqrt(max_variance_squared);
} else {
state.have_speed_accuracy = false;
}
break;
}
}
return false;
}
void AP_GPS_SBF::broadcast_configuration_failure_reason(void) const
{
if (gps._auto_config != AP_GPS::GPS_AUTO_CONFIG_DISABLE &&
_init_blob_index < ARRAY_SIZE(_initialisation_blob)) {
gcs().send_text(MAV_SEVERITY_INFO, "GPS %d: SBF is not fully configured (%d/%d)", state.instance + 1,
_init_blob_index, ARRAY_SIZE(_initialisation_blob));
}
}
bool AP_GPS_SBF::is_configured (void) {
return (gps._auto_config == AP_GPS::GPS_AUTO_CONFIG_DISABLE ||
_init_blob_index >= ARRAY_SIZE(_initialisation_blob));
}
2017-09-21 22:22:22 -03:00
bool AP_GPS_SBF::is_healthy (void) const {
return (RxError & RX_ERROR_MASK) == 0;
}
void AP_GPS_SBF::mount_disk (void) const {
const char* command = "emd, DSK1, Mount\n";
Debug("Mounting disk");
port->write((const uint8_t*)command, strlen(command));
}
void AP_GPS_SBF::unmount_disk (void) const {
const char* command = "emd, DSK1, Unmount\n";
Debug("Unmounting disk");
port->write((const uint8_t*)command, strlen(command));
}
bool AP_GPS_SBF::prepare_for_arming(void) {
bool is_logging = true; // assume that its logging until proven otherwise
if (gps._raw_data) {
if (!(RxState & SBF_DISK_MOUNTED)){
is_logging = false;
gcs().send_text(MAV_SEVERITY_INFO, "GPS %d: SBF disk is not mounted", state.instance + 1);
// simply attempt to mount the disk, no need to check if the command was
2017-12-04 20:48:36 -04:00
// ACK/NACK'd as we don't continuously attempt to remount the disk
gcs().send_text(MAV_SEVERITY_INFO, "GPS %d: Attempting to mount disk", state.instance + 1);
mount_disk();
// reset the flag to indicate if we should be logging
_has_been_armed = false;
}
else if (RxState & SBF_DISK_FULL) {
is_logging = false;
gcs().send_text(MAV_SEVERITY_INFO, "GPS %d: SBF disk is full", state.instance + 1);
}
else if (!(RxState & SBF_DISK_ACTIVITY)) {
is_logging = false;
gcs().send_text(MAV_SEVERITY_INFO, "GPS %d: SBF is not currently logging", state.instance + 1);
}
}
return is_logging;
}