ardupilot/libraries/AP_Mount/AP_Mount_Gremsy.cpp

324 lines
11 KiB
C++
Raw Normal View History

#include "AP_Mount_config.h"
#if HAL_MOUNT_GREMSY_ENABLED
#include "AP_Mount_Gremsy.h"
2022-11-06 23:48:42 -04:00
#include <AP_HAL/AP_HAL.h>
#include <GCS_MAVLink/GCS.h>
extern const AP_HAL::HAL& hal;
#define AP_MOUNT_GREMSY_RESEND_MS 1000 // resend angle targets to gimbal at least once per second
#define AP_MOUNT_GREMSY_SEARCH_MS 60000 // search for gimbal for 1 minute after startup
#define AP_MOUNT_GREMSY_ATTITUDE_INTERVAL_US 20000 // send ATTITUDE and AUTOPILOT_STATE_FOR_GIMBAL_DEVICE at 50hz
// update mount position
void AP_Mount_Gremsy::update()
{
// exit immediately if not initialised
if (!_initialised) {
find_gimbal();
return;
}
// change to RC_TARGETING mode if RC input has changed
set_rctargeting_on_rcinput_change();
// update based on mount mode
switch (get_mode()) {
// move mount to a "retracted" position. We disable motors
case MAV_MOUNT_MODE_RETRACT:
// handled below
mnt_target.target_type = MountTargetType::ANGLE;
mnt_target.angle_rad.set(Vector3f{0,0,0}, false);
send_gimbal_device_retract();
break;
// move mount to a neutral position, typically pointing forward
case MAV_MOUNT_MODE_NEUTRAL: {
const Vector3f &angle_bf_target = _params.neutral_angles.get();
mnt_target.target_type = MountTargetType::ANGLE;
mnt_target.angle_rad.set(angle_bf_target*DEG_TO_RAD, false);
break;
}
case MAV_MOUNT_MODE_MAVLINK_TARGETING: {
// mavlink targets are stored while handling the incoming message set_angle_target() or set_rate_target()
break;
}
// RC radio manual angle control, but with stabilization from the AHRS
case MAV_MOUNT_MODE_RC_TARGETING:
update_mnt_target_from_rc_target();
break;
// point mount to a GPS point given by the mission planner
case MAV_MOUNT_MODE_GPS_POINT:
if (get_angle_target_to_roi(mnt_target.angle_rad)) {
mnt_target.target_type = MountTargetType::ANGLE;
}
break;
// point mount to Home location
case MAV_MOUNT_MODE_HOME_LOCATION:
if (get_angle_target_to_home(mnt_target.angle_rad)) {
mnt_target.target_type = MountTargetType::ANGLE;
}
break;
// point mount to another vehicle
case MAV_MOUNT_MODE_SYSID_TARGET:
if (get_angle_target_to_sysid(mnt_target.angle_rad)) {
mnt_target.target_type = MountTargetType::ANGLE;
}
break;
default:
// unknown mode so do nothing
break;
}
// send target angles or rates depending on the target type
switch (mnt_target.target_type) {
case MountTargetType::ANGLE:
send_gimbal_device_set_attitude(mnt_target.angle_rad.roll, mnt_target.angle_rad.pitch, mnt_target.angle_rad.yaw, mnt_target.angle_rad.yaw_is_ef);
break;
case MountTargetType::RATE:
send_gimbal_device_set_rate(mnt_target.rate_rads.roll, mnt_target.rate_rads.pitch, mnt_target.rate_rads.yaw, mnt_target.rate_rads.yaw_is_ef);
break;
}
}
2022-06-16 05:13:27 -03:00
// return true if healthy
bool AP_Mount_Gremsy::healthy() const
{
// unhealthy until gimbal has been found and replied with device info
if (_link == nullptr || !_got_device_info) {
2022-06-16 05:13:27 -03:00
return false;
}
// unhealthy if attitude information NOT received within the last second
if (AP_HAL::millis() - _last_attitude_status_ms > 1000) {
return false;
}
// check failure flags
uint32_t critical_failure_flags = GIMBAL_DEVICE_ERROR_FLAGS_ENCODER_ERROR |
GIMBAL_DEVICE_ERROR_FLAGS_POWER_ERROR |
GIMBAL_DEVICE_ERROR_FLAGS_MOTOR_ERROR |
GIMBAL_DEVICE_ERROR_FLAGS_SOFTWARE_ERROR |
GIMBAL_DEVICE_ERROR_FLAGS_COMMS_ERROR;
if ((_gimbal_device_attitude_status.failure_flags & critical_failure_flags) > 0) {
return false;
}
// if we get this far return mount is healthy
return true;
}
// get attitude as a quaternion. returns true on success
bool AP_Mount_Gremsy::get_attitude_quaternion(Quaternion& att_quat)
{
att_quat = _gimbal_device_attitude_status.q;
return true;
}
// search for gimbal in GCS_MAVLink routing table
void AP_Mount_Gremsy::find_gimbal()
{
// do not look for gimbal for first 10 seconds so user may see banner
uint32_t now_ms = AP_HAL::millis();
if (now_ms < 10000) {
return;
}
// search for gimbal for 60 seconds or until armed
if ((now_ms > AP_MOUNT_GREMSY_SEARCH_MS) && hal.util->get_soft_armed()) {
return;
}
// search for a mavlink enabled gimbal
if (_link == nullptr) {
// we expect that instance 0 has compid = MAV_COMP_ID_GIMBAL, instance 1 has compid = MAV_COMP_ID_GIMBAL2, etc
uint8_t compid = (_instance == 0) ? MAV_COMP_ID_GIMBAL : MAV_COMP_ID_GIMBAL2 + (_instance - 1);
_link = GCS_MAVLINK::find_by_mavtype_and_compid(MAV_TYPE_GIMBAL, compid, _sysid);
if (_link == nullptr) {
// have not yet found a gimbal so return
return;
}
_compid = compid;
}
// request GIMBAL_DEVICE_INFORMATION
if (!_got_device_info) {
if (now_ms - _last_devinfo_req_ms > 1000) {
_last_devinfo_req_ms = now_ms;
request_gimbal_device_information();
}
return;
}
// start sending autopilot attitude to gimbal
if (start_sending_attitude_to_gimbal()) {
_initialised = true;
}
}
// handle GIMBAL_DEVICE_INFORMATION message
void AP_Mount_Gremsy::handle_gimbal_device_information(const mavlink_message_t &msg)
{
// exit immediately if this is not our message
if (msg.sysid != _sysid || msg.compid != _compid) {
return;
}
mavlink_gimbal_device_information_t info;
mavlink_msg_gimbal_device_information_decode(&msg, &info);
// set parameter defaults from gimbal information
_params.roll_angle_min.set_default(degrees(info.roll_min));
_params.roll_angle_max.set_default(degrees(info.roll_max));
_params.pitch_angle_min.set_default(degrees(info.pitch_min));
_params.pitch_angle_max.set_default(degrees(info.pitch_max));
_params.yaw_angle_min.set_default(degrees(info.yaw_min));
_params.yaw_angle_max.set_default(degrees(info.yaw_max));
const uint8_t fw_ver_major = info.firmware_version & 0x000000FF;
const uint8_t fw_ver_minor = (info.firmware_version & 0x0000FF00) >> 8;
const uint8_t fw_ver_revision = (info.firmware_version & 0x00FF0000) >> 16;
const uint8_t fw_ver_build = (info.firmware_version & 0xFF000000) >> 24;
// display gimbal info to user
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Mount: %s %s fw:%u.%u.%u.%u",
info.vendor_name,
info.model_name,
(unsigned)fw_ver_major,
(unsigned)fw_ver_minor,
(unsigned)fw_ver_revision,
(unsigned)fw_ver_build);
_got_device_info = true;
}
// handle GIMBAL_DEVICE_ATTITUDE_STATUS message
void AP_Mount_Gremsy::handle_gimbal_device_attitude_status(const mavlink_message_t &msg)
{
// exit immediately if this is not our message
if (msg.sysid != _sysid || msg.compid != _compid) {
return;
}
// take copy of message so it can be forwarded onto GCS later
mavlink_msg_gimbal_device_attitude_status_decode(&msg, &_gimbal_device_attitude_status);
2022-06-16 05:13:27 -03:00
_last_attitude_status_ms = AP_HAL::millis();
}
// request GIMBAL_DEVICE_INFORMATION message
void AP_Mount_Gremsy::request_gimbal_device_information() const
{
if (_link == nullptr) {
return;
}
const mavlink_command_long_t pkt {
MAVLINK_MSG_ID_GIMBAL_DEVICE_INFORMATION, // param1
0, // param2
0, // param3
0, // param4
0, // param5
0, // param6
0, // param7
MAV_CMD_REQUEST_MESSAGE,
_sysid,
_compid,
0 // confirmation
};
_link->send_message(MAVLINK_MSG_ID_COMMAND_LONG, (const char*)&pkt);
}
// start sending ATTITUDE and AUTOPILOT_STATE_FOR_GIMBAL_DEVICE to gimbal
bool AP_Mount_Gremsy::start_sending_attitude_to_gimbal()
{
// better safe than sorry:
if (_link == nullptr) {
return false;
}
// send AUTOPILOT_STATE_FOR_GIMBAL_DEVICE
const MAV_RESULT res = _link->set_message_interval(MAVLINK_MSG_ID_AUTOPILOT_STATE_FOR_GIMBAL_DEVICE, AP_MOUNT_GREMSY_ATTITUDE_INTERVAL_US);
// return true on success
return (res == MAV_RESULT_ACCEPTED);
}
// send GIMBAL_DEVICE_SET_ATTITUDE to gimbal to command gimbal to retract (aka relax)
void AP_Mount_Gremsy::send_gimbal_device_retract() const
{
const mavlink_gimbal_device_set_attitude_t pkt {
{NAN, NAN, NAN, NAN}, // attitude
0, // angular velocity x
0, // angular velocity y
0, // angular velocity z
GIMBAL_DEVICE_FLAGS_RETRACT, // flags
_sysid,
_compid
};
_link->send_message(MAVLINK_MSG_ID_GIMBAL_DEVICE_SET_ATTITUDE, (const char*)&pkt);
}
// send GIMBAL_DEVICE_SET_ATTITUDE to gimbal to control rate
// earth_frame should be true if yaw_rads target is an earth frame rate, false if body_frame
void AP_Mount_Gremsy::send_gimbal_device_set_rate(float roll_rads, float pitch_rads, float yaw_rads, bool earth_frame) const
{
// prepare flags
const uint16_t flags = earth_frame ? (GIMBAL_DEVICE_FLAGS_ROLL_LOCK | GIMBAL_DEVICE_FLAGS_PITCH_LOCK | GIMBAL_DEVICE_FLAGS_YAW_LOCK) : 0;
const mavlink_gimbal_device_set_attitude_t pkt {
{NAN, NAN, NAN, NAN}, // attitude
roll_rads, // angular velocity x
pitch_rads, // angular velocity y
yaw_rads, // angular velocity z
flags,
_sysid,
_compid
};
_link->send_message(MAVLINK_MSG_ID_GIMBAL_DEVICE_SET_ATTITUDE, (const char*)&pkt);
}
// send GIMBAL_DEVICE_SET_ATTITUDE to gimbal to control attitude
// earth_frame should be true if yaw_rad target is in earth frame angle, false if body_frame
void AP_Mount_Gremsy::send_gimbal_device_set_attitude(float roll_rad, float pitch_rad, float yaw_rad, bool earth_frame) const
{
// exit immediately if not initialised
if (!_initialised) {
return;
}
// prepare flags
const uint16_t flags = earth_frame ? (GIMBAL_DEVICE_FLAGS_ROLL_LOCK | GIMBAL_DEVICE_FLAGS_PITCH_LOCK | GIMBAL_DEVICE_FLAGS_YAW_LOCK) : 0;
// convert euler angles to quaternion
Quaternion q;
q.from_euler(roll_rad, pitch_rad, yaw_rad);
const mavlink_gimbal_device_set_attitude_t pkt {
{q.q1, q.q2, q.q3, q.q4},
NAN, // angular velocity x
NAN, // angular velocity y
NAN, // angular velocity z
flags,
_sysid,
_compid
};
_link->send_message(MAVLINK_MSG_ID_GIMBAL_DEVICE_SET_ATTITUDE, (const char*)&pkt);
}
#endif // HAL_MOUNT_GREMSY_ENABLED