ardupilot/libraries/AP_HAL_ESP32/RCOutput.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

443 lines
15 KiB
C++
Raw Normal View History

/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Code by Charles "Silvanosky" Villard, David "Buzz" Bussenschutt,
* Andrey "ARg" Romanov, and Thomas "tpw_rules" Watson
*
*/
#include "RCOutput.h"
#include <AP_Common/AP_Common.h>
#include <AP_HAL/AP_HAL.h>
#include <AP_Math/AP_Math.h>
#include <AP_BoardConfig/AP_BoardConfig.h>
#include "driver/rtc_io.h"
#include <stdio.h>
#include "esp_log.h"
#define TAG "RCOut"
extern const AP_HAL::HAL& hal;
using namespace ESP32;
#ifdef HAL_ESP32_RCOUT
gpio_num_t outputs_pins[] = HAL_ESP32_RCOUT;
//If the RTC source is not required, then GPIO32/Pin12/32K_XP and GPIO33/Pin13/32K_XN can be used as digital GPIOs.
#else
gpio_num_t outputs_pins[] = {};
#endif
/*
* The MCPWM (motor control PWM) peripheral is used to generate PWM signals for
* RC output. It is divided up into the following blocks:
* * The chip has SOC_MCPWM_GROUPS groups
* * Each group has SOC_MCPWM_TIMERS_PER_GROUP timers and operators
* * Each operator has SOC_MCPWM_COMPARATORS_PER_OPERATOR comparators and
* generators
* * Each generator can drive one GPIO pin
* Though there is more possible, we use the following capabilities:
* * Groups have an 8 bit integer prescaler from a 160MHz peripheral clock
* (the prescaler value defaults to 2)
* * Each timer has an 8 bit integer prescaler from the group clock, a 16 bit
* period, and is connected to exactly one operator
* * Each comparator in an operator acts on the corresponding timer's value and
* is connected to exactly one generator which drives exactly one GPIO pin
*
* Each MCPWM group (on ESP32/ESP32S3) gives us 3 independent "PWM groups"
* (in the STM32 sense) which contain 2 GPIO pins. The pins are assigned
* consecutively from the HAL_ESP32_RCOUT list. The frequency of each group can
* be controlled independently by changing that timer's period.
* * Running the timer at 1MHz allows 16-1000Hz with at least 1000 ticks per
* cycle and makes assigning the compare value easy
*
* MCPWM is only capable of PWM; DMA-based modes will require using the RMT
* peripheral.
*/
// each of our PWM groups has its own timer
#define MAX_GROUPS (SOC_MCPWM_GROUPS*SOC_MCPWM_TIMERS_PER_GROUP)
// we connect one timer to one operator
static_assert(SOC_MCPWM_OPERATORS_PER_GROUP >= SOC_MCPWM_TIMERS_PER_GROUP);
// and one generator to one comparator
static_assert(SOC_MCPWM_GENERATORS_PER_OPERATOR >= SOC_MCPWM_COMPARATORS_PER_OPERATOR);
#define SERVO_TIMEBASE_RESOLUTION_HZ 1000000 // 1MHz, 1us per tick, 2x80 prescaler
#define SERVO_DEFAULT_FREQ_HZ 50 // the rest of ArduPilot assumes this!
#define MAX_CHANNELS ARRAY_SIZE(outputs_pins)
static_assert(MAX_CHANNELS < 12, "overrunning _pending and safe_pwm"); // max for current chips
static_assert(MAX_CHANNELS < 32, "overrunning bitfields");
#define NEEDED_GROUPS ((MAX_CHANNELS+SOC_MCPWM_COMPARATORS_PER_OPERATOR-1)/SOC_MCPWM_COMPARATORS_PER_OPERATOR)
static_assert(NEEDED_GROUPS <= MAX_GROUPS, "not enough hardware PWM groups");
RCOutput::pwm_group RCOutput::pwm_group_list[NEEDED_GROUPS];
RCOutput::pwm_chan RCOutput::pwm_chan_list[MAX_CHANNELS];
void RCOutput::init()
{
#ifdef CONFIG_IDF_TARGET_ESP32
// only on plain esp32
// 32 and 33 are special as they dont default to gpio, but can be if u disable their rtc setup:
rtc_gpio_deinit(GPIO_NUM_32);
rtc_gpio_deinit(GPIO_NUM_33);
#endif
printf("oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo\n");
printf("RCOutput::init() - channels available: %d \n",(int)MAX_CHANNELS);
printf("oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo\n");
_initialized = true; // assume we are initialized, any error will call abort()
RCOutput::pwm_group *curr_group = &pwm_group_list[0];
RCOutput::pwm_chan *curr_ch = &pwm_chan_list[0];
int chan = 0;
// loop through all the hardware blocks and set them up. returns when we run
// out of GPIO pins (each of which is assigned in order to a PWM channel)
for (int mcpwm_group_id=0; mcpwm_group_id<SOC_MCPWM_GROUPS; mcpwm_group_id++) {
for (int timer_num=0; timer_num<SOC_MCPWM_TIMERS_PER_GROUP; timer_num++) {
RCOutput::pwm_group &group = *curr_group++;
// set up the group to use the default frequency
group.mcpwm_group_id = mcpwm_group_id;
group.rc_frequency = SERVO_DEFAULT_FREQ_HZ;
group.ch_mask = 0;
// create timer with default tick rate and frequency, and configure
// it to constantly run
mcpwm_timer_config_t timer_config {
.group_id = mcpwm_group_id,
.clk_src = MCPWM_TIMER_CLK_SRC_PLL160M,
.resolution_hz = SERVO_TIMEBASE_RESOLUTION_HZ,
.count_mode = MCPWM_TIMER_COUNT_MODE_UP,
.period_ticks = SERVO_TIMEBASE_RESOLUTION_HZ/SERVO_DEFAULT_FREQ_HZ,
};
ESP_ERROR_CHECK(mcpwm_new_timer(&timer_config, &group.h_timer));
ESP_ERROR_CHECK(mcpwm_timer_enable(group.h_timer));
ESP_ERROR_CHECK(mcpwm_timer_start_stop(group.h_timer, MCPWM_TIMER_START_NO_STOP));
// create and connect operator
mcpwm_operator_config_t operator_config {
.group_id = mcpwm_group_id,
};
ESP_ERROR_CHECK(mcpwm_new_operator(&operator_config, &group.h_oper));
ESP_ERROR_CHECK(mcpwm_operator_connect_timer(group.h_oper, group.h_timer));
for (int comparator_num=0; comparator_num<SOC_MCPWM_COMPARATORS_PER_OPERATOR; comparator_num++) {
RCOutput::pwm_chan &ch = *curr_ch++;
// set up the output to be a part of the current group
ch.group = &group;
ch.gpio_num = outputs_pins[chan];
ch.value = 0;
group.ch_mask |= (1U << chan);
// create and connect comparator
mcpwm_comparator_config_t comparator_config {
// grab new comparator value when timer is zero
.flags { .update_cmp_on_tez = true },
};
ESP_ERROR_CHECK(mcpwm_new_comparator(group.h_oper, &comparator_config, &ch.h_cmpr));
ESP_ERROR_CHECK(mcpwm_comparator_set_compare_value(ch.h_cmpr, 0)); // zero the output
// create and connect generator
mcpwm_generator_config_t generator_config {
.gen_gpio_num = outputs_pins[chan],
};
ESP_ERROR_CHECK(mcpwm_new_generator(group.h_oper, &generator_config, &ch.h_gen));
// configure it to go low on compare threshold (takes priority over going high)
ESP_ERROR_CHECK(mcpwm_generator_set_action_on_compare_event(ch.h_gen,
MCPWM_GEN_COMPARE_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP,
ch.h_cmpr, MCPWM_GEN_ACTION_LOW)));
// and go high on counter empty
ESP_ERROR_CHECK(mcpwm_generator_set_action_on_timer_event(ch.h_gen,
MCPWM_GEN_TIMER_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP,
MCPWM_TIMER_EVENT_EMPTY, MCPWM_GEN_ACTION_HIGH)));
if (++chan == MAX_CHANNELS) {
return; // finished all channels; done setting up the hardware
}
}
}
}
}
void RCOutput::set_freq(uint32_t chmask, uint16_t freq_hz)
{
if (!_initialized) {
return;
}
for (auto &group : pwm_group_list) {
if ((group.ch_mask & chmask) != 0) { // group has channels to set?
// greater than 400 doesn't leave enough time for the down edge
uint16_t group_freq = constrain_value((int)freq_hz, 16, 400);
ESP_ERROR_CHECK(mcpwm_timer_set_period(group.h_timer, SERVO_TIMEBASE_RESOLUTION_HZ/group_freq));
group.rc_frequency = group_freq;
// disallow changing frequency of this group if it is greater than the default
if (group_freq > SERVO_DEFAULT_FREQ_HZ) {
fast_channel_mask |= group.ch_mask;
}
}
}
}
void RCOutput::set_default_rate(uint16_t freq_hz)
{
if (!_initialized) {
return;
}
for (auto &group : pwm_group_list) {
// only set frequency of groups without fast channels
if (!(group.ch_mask & fast_channel_mask) && group.ch_mask) {
set_freq(group.ch_mask, freq_hz);
// setting a high default frequency mustn't make channels fast
fast_channel_mask &= ~group.ch_mask;
}
}
}
uint16_t RCOutput::get_freq(uint8_t chan)
{
if (!_initialized || chan >= MAX_CHANNELS) {
return SERVO_DEFAULT_FREQ_HZ;
}
pwm_group &group = *pwm_chan_list[chan].group;
return group.rc_frequency;
}
void RCOutput::enable_ch(uint8_t chan)
{
if (!_initialized || chan >= MAX_CHANNELS) {
return;
}
pwm_chan &ch = pwm_chan_list[chan];
// set output to high when timer == 0 like normal
ESP_ERROR_CHECK(mcpwm_generator_set_action_on_timer_event(ch.h_gen,
MCPWM_GEN_TIMER_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, MCPWM_TIMER_EVENT_EMPTY, MCPWM_GEN_ACTION_HIGH)));
}
void RCOutput::disable_ch(uint8_t chan)
{
if (!_initialized || chan >= MAX_CHANNELS) {
return;
}
write(chan, 0);
pwm_chan &ch = pwm_chan_list[chan];
// set output to low when timer == 0, so the output is always low (after
// this cycle). conveniently avoids pulse truncation
ESP_ERROR_CHECK(mcpwm_generator_set_action_on_timer_event(ch.h_gen,
MCPWM_GEN_TIMER_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, MCPWM_TIMER_EVENT_EMPTY, MCPWM_GEN_ACTION_LOW)));
}
void RCOutput::write(uint8_t chan, uint16_t period_us)
{
if (!_initialized || chan >= MAX_CHANNELS) {
return;
}
if (_corked) {
_pending[chan] = period_us;
_pending_mask |= (1U<<chan);
} else {
write_int(chan, period_us);
}
}
uint16_t RCOutput::read(uint8_t chan)
{
if (chan >= MAX_CHANNELS || !_initialized) {
return 0;
}
pwm_chan &ch = pwm_chan_list[chan];
return ch.value;
}
void RCOutput::read(uint16_t *period_us, uint8_t len)
{
for (int i = 0; i < MIN(len, MAX_CHANNELS); i++) {
period_us[i] = read(i);
}
}
void RCOutput::cork()
{
_corked = true;
}
void RCOutput::push()
{
if (!_corked) {
return;
}
bool safety_on = hal.util->safety_switch_state() == AP_HAL::Util::SAFETY_DISARMED;
for (uint8_t i = 0; i < MAX_CHANNELS; i++) {
if ((1U<<i) & _pending_mask) {
uint32_t period_us = _pending[i];
// If safety is on and safety mask not bypassing
if (safety_on && !(safety_mask & (1U<<(i)))) {
// safety is on, overwride pwm
period_us = safe_pwm[i];
}
write_int(i, period_us);
}
}
_corked = false;
}
void RCOutput::timer_tick(void)
{
safety_update();
}
void RCOutput::write_int(uint8_t chan, uint16_t period_us)
{
if (!_initialized || chan >= MAX_CHANNELS) {
return;
}
bool safety_on = hal.util->safety_switch_state() == AP_HAL::Util::SAFETY_DISARMED;
if (safety_on && !(safety_mask & (1U<<(chan)))) {
// safety is on, overwride pwm
period_us = safe_pwm[chan];
}
pwm_chan &ch = pwm_chan_list[chan];
const uint16_t max_period_us = SERVO_TIMEBASE_RESOLUTION_HZ/SERVO_DEFAULT_FREQ_HZ;
if (period_us > max_period_us) {
period_us = max_period_us;
}
ESP_ERROR_CHECK(mcpwm_comparator_set_compare_value(ch.h_cmpr, period_us));
ch.value = period_us;
}
/*
get safety switch state for Util.cpp
*/
AP_HAL::Util::safety_state RCOutput::_safety_switch_state(void)
{
if (!hal.util->was_watchdog_reset()) {
hal.util->persistent_data.safety_state = safety_state;
}
return safety_state;
}
/*
force the safety switch on, disabling PWM output from the IO board
*/
bool RCOutput::force_safety_on(void)
{
safety_state = AP_HAL::Util::SAFETY_DISARMED;
return true;
}
/*
force the safety switch off, enabling PWM output from the IO board
*/
void RCOutput::force_safety_off(void)
{
safety_state = AP_HAL::Util::SAFETY_ARMED;
}
/*
set PWM to send to a set of channels when the safety switch is
in the safe state
*/
void RCOutput::set_safety_pwm(uint32_t chmask, uint16_t period_us)
{
for (uint8_t i=0; i<ARRAY_SIZE(safe_pwm); i++) {
if (chmask & (1U<<i)) {
safe_pwm[i] = period_us;
}
}
}
/*
update safety state
*/
void RCOutput::safety_update(void)
{
uint32_t now = AP_HAL::millis();
if (now - safety_update_ms < 100) {
// update safety at 10Hz
return;
}
safety_update_ms = now;
AP_BoardConfig *boardconfig = AP_BoardConfig::get_singleton();
if (boardconfig) {
// remember mask of channels to allow with safety on
safety_mask = boardconfig->get_safety_mask();
}
#ifdef HAL_GPIO_PIN_SAFETY_IN
gpio_set_direction((gpio_num_t)HAL_GPIO_PIN_SAFETY_IN, GPIO_MODE_INPUT);
gpio_set_pull_mode((gpio_num_t)HAL_GPIO_PIN_SAFETY_IN, GPIO_PULLDOWN_ONLY);
bool safety_pressed = gpio_get_level((gpio_num_t)HAL_GPIO_PIN_SAFETY_IN);
if (safety_pressed) {
AP_BoardConfig *brdconfig = AP_BoardConfig::get_singleton();
if (safety_press_count < UINT8_MAX) {
safety_press_count++;
}
if (brdconfig && brdconfig->safety_button_handle_pressed(safety_press_count)) {
if (safety_state ==AP_HAL::Util::SAFETY_ARMED) {
safety_state = AP_HAL::Util::SAFETY_DISARMED;
} else {
safety_state = AP_HAL::Util::SAFETY_ARMED;
}
}
} else {
safety_press_count = 0;
}
#endif
#ifdef HAL_GPIO_PIN_LED_SAFETY
led_counter = (led_counter+1) % 16;
const uint16_t led_pattern = safety_state==AP_HAL::Util::SAFETY_DISARMED?0x5500:0xFFFF;
gpio_set_level((gpio_num_t)HAL_GPIO_PIN_LED_SAFETY, (led_pattern & (1U << led_counter))?0:1);
#endif
}
/*
set PWM to send to a set of channels if the FMU firmware dies
*/
void RCOutput::set_failsafe_pwm(uint32_t chmask, uint16_t period_us)
{
//RIP (not the pointer)
}