ardupilot/libraries/AP_GPS/AP_GPS.h

463 lines
15 KiB
C
Raw Normal View History

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
2012-12-18 20:40:18 -04:00
#include <AP_HAL/AP_HAL.h>
#include <inttypes.h>
#include <AP_Common/AP_Common.h>
#include <AP_Param/AP_Param.h>
#include <AP_Math/AP_Math.h>
#include <GCS_MAVLink/GCS_MAVLink.h>
#include <AP_Vehicle/AP_Vehicle.h>
#include "GPS_detect_state.h"
#include <AP_SerialManager/AP_SerialManager.h>
/**
maximum number of GPS instances available on this platform. If more
2017-01-05 14:07:14 -04:00
than 1 then redundant sensors may be available
*/
#define GPS_MAX_INSTANCES 2
#define GPS_RTK_INJECT_TO_ALL 127
// the number of GPS leap seconds
#define GPS_LEAPSECONDS_MILLIS 18000ULL
class DataFlash_Class;
class AP_GPS_Backend;
/// @class AP_GPS
/// GPS driver main class
class AP_GPS
{
public:
// constructor
AP_GPS() {
AP_Param::setup_object_defaults(this, var_info);
}
/// Startup initialisation.
2015-01-19 09:36:35 -04:00
void init(DataFlash_Class *dataflash, const AP_SerialManager& serial_manager);
/// Update GPS state based on possible bytes received from the module.
/// This routine must be called periodically (typically at 10Hz or
/// more) to process incoming data.
void update(void);
// GPS driver types
enum GPS_Type {
GPS_TYPE_NONE = 0,
GPS_TYPE_AUTO = 1,
GPS_TYPE_UBLOX = 2,
GPS_TYPE_MTK = 3,
GPS_TYPE_MTK19 = 4,
GPS_TYPE_NMEA = 5,
2014-04-01 03:25:15 -03:00
GPS_TYPE_SIRF = 6,
GPS_TYPE_HIL = 7,
GPS_TYPE_SBP = 8,
GPS_TYPE_PX4 = 9,
GPS_TYPE_SBF = 10,
2016-10-16 21:56:34 -03:00
GPS_TYPE_GSOF = 11,
GPS_TYPE_QURT = 12,
2016-01-18 17:54:40 -04:00
GPS_TYPE_ERB = 13,
GPS_TYPE_MAV = 14,
2016-10-16 21:56:34 -03:00
GPS_TYPE_NOVA = 15,
};
/// GPS status codes
enum GPS_Status {
2016-10-16 21:56:34 -03:00
NO_GPS = GPS_FIX_TYPE_NO_GPS, ///< No GPS connected/detected
NO_FIX = GPS_FIX_TYPE_NO_FIX, ///< Receiving valid GPS messages but no lock
GPS_OK_FIX_2D = GPS_FIX_TYPE_2D_FIX, ///< Receiving valid messages and 2D lock
GPS_OK_FIX_3D = GPS_FIX_TYPE_3D_FIX, ///< Receiving valid messages and 3D lock
GPS_OK_FIX_3D_DGPS = GPS_FIX_TYPE_DGPS, ///< Receiving valid messages and 3D lock with differential improvements
GPS_OK_FIX_3D_RTK_FLOAT = GPS_FIX_TYPE_RTK_FLOAT, ///< Receiving valid messages and 3D RTK Float
GPS_OK_FIX_3D_RTK_FIXED = GPS_FIX_TYPE_RTK_FIXED, ///< Receiving valid messages and 3D RTK Fixed
};
// GPS navigation engine settings. Not all GPS receivers support
// this
enum GPS_Engine_Setting {
GPS_ENGINE_NONE = -1,
GPS_ENGINE_PORTABLE = 0,
GPS_ENGINE_STATIONARY = 2,
GPS_ENGINE_PEDESTRIAN = 3,
GPS_ENGINE_AUTOMOTIVE = 4,
GPS_ENGINE_SEA = 5,
GPS_ENGINE_AIRBORNE_1G = 6,
GPS_ENGINE_AIRBORNE_2G = 7,
GPS_ENGINE_AIRBORNE_4G = 8
};
enum GPS_Config {
GPS_ALL_CONFIGURED = 255
};
/*
The GPS_State structure is filled in by the backend driver as it
parses each message from the GPS.
*/
struct GPS_State {
uint8_t instance; // the instance number of this GPS
// all the following fields must all be filled by the backend driver
GPS_Status status; ///< driver fix status
uint32_t time_week_ms; ///< GPS time (milliseconds from start of GPS week)
uint16_t time_week; ///< GPS week number
Location location; ///< last fix location
float ground_speed; ///< ground speed in m/sec
float ground_course; ///< ground course in degrees
uint16_t hdop; ///< horizontal dilution of precision in cm
uint16_t vdop; ///< vertical dilution of precision in cm
2016-05-12 14:02:29 -03:00
uint8_t num_sats; ///< Number of visible satellites
Vector3f velocity; ///< 3D velocitiy in m/s, in NED format
float speed_accuracy;
float horizontal_accuracy;
float vertical_accuracy;
bool have_vertical_velocity:1; ///< does this GPS give vertical velocity?
bool have_speed_accuracy:1;
bool have_horizontal_accuracy:1;
bool have_vertical_accuracy:1;
uint32_t last_gps_time_ms; ///< the system time we got the last GPS timestamp, milliseconds
};
// Pass mavlink data to message handlers (for MAV type)
void handle_msg(const mavlink_message_t *msg);
// Accessor functions
// return number of active GPS sensors. Note that if the first GPS
// is not present but the 2nd is then we return 2
uint8_t num_sensors(void) const {
return num_instances;
}
uint8_t primary_sensor(void) const {
return primary_instance;
}
/// Query GPS status
GPS_Status status(uint8_t instance) const {
return state[instance].status;
}
GPS_Status status(void) const {
return status(primary_instance);
}
// Query the highest status this GPS supports
GPS_Status highest_supported_status(uint8_t instance) const;
GPS_Status highest_supported_status(void) const;
// location of last fix
const Location &location(uint8_t instance) const {
return state[instance].location;
}
const Location &location() const {
return location(primary_instance);
}
bool speed_accuracy(uint8_t instance, float &sacc) const {
if(state[instance].have_speed_accuracy) {
sacc = state[instance].speed_accuracy;
return true;
}
return false;
}
bool speed_accuracy(float &sacc) const {
return speed_accuracy(primary_instance, sacc);
}
bool horizontal_accuracy(uint8_t instance, float &hacc) const {
if(state[instance].have_horizontal_accuracy) {
hacc = state[instance].horizontal_accuracy;
return true;
}
return false;
}
bool horizontal_accuracy(float &hacc) const {
return horizontal_accuracy(primary_instance, hacc);
}
bool vertical_accuracy(uint8_t instance, float &vacc) const {
if(state[instance].have_vertical_accuracy) {
vacc = state[instance].vertical_accuracy;
return true;
}
return false;
}
bool vertical_accuracy(float &vacc) const {
return vertical_accuracy(primary_instance, vacc);
}
// 3D velocity in NED format
const Vector3f &velocity(uint8_t instance) const {
return state[instance].velocity;
}
const Vector3f &velocity() const {
return velocity(primary_instance);
}
// ground speed in m/s
float ground_speed(uint8_t instance) const {
return state[instance].ground_speed;
}
float ground_speed() const {
return ground_speed(primary_instance);
}
// ground speed in cm/s
uint32_t ground_speed_cm(void) {
return ground_speed() * 100;
}
// ground course in centidegrees
float ground_course(uint8_t instance) const {
return state[instance].ground_course;
}
float ground_course() const {
return ground_course(primary_instance);
}
int32_t ground_course_cd(uint8_t instance) const {
return ground_course(instance) * 100;
}
int32_t ground_course_cd() const {
return ground_course_cd(primary_instance);
}
// number of locked satellites
uint8_t num_sats(uint8_t instance) const {
return state[instance].num_sats;
}
uint8_t num_sats() const {
return num_sats(primary_instance);
}
// GPS time of week in milliseconds
uint32_t time_week_ms(uint8_t instance) const {
return state[instance].time_week_ms;
}
uint32_t time_week_ms() const {
return time_week_ms(primary_instance);
}
// GPS week
uint16_t time_week(uint8_t instance) const {
return state[instance].time_week;
}
uint16_t time_week() const {
return time_week(primary_instance);
}
// horizontal dilution of precision
uint16_t get_hdop(uint8_t instance) const {
return state[instance].hdop;
}
uint16_t get_hdop() const {
return get_hdop(primary_instance);
}
// vertical dilution of precision
uint16_t get_vdop(uint8_t instance) const {
return state[instance].vdop;
}
uint16_t get_vdop() const {
return get_vdop(primary_instance);
}
// the time we got our last fix in system milliseconds. This is
// used when calculating how far we might have moved since that fix
uint32_t last_fix_time_ms(uint8_t instance) const {
return timing[instance].last_fix_time_ms;
}
uint32_t last_fix_time_ms(void) const {
return last_fix_time_ms(primary_instance);
}
// the time we last processed a message in milliseconds. This is
// used to indicate that we have new GPS data to process
uint32_t last_message_time_ms(uint8_t instance) const {
return timing[instance].last_message_time_ms;
}
uint32_t last_message_time_ms(void) const {
return last_message_time_ms(primary_instance);
}
// convert GPS week and millis to unix epoch in ms
static uint64_t time_epoch_convert(uint16_t gps_week, uint32_t gps_ms);
// return last fix time since the 1/1/1970 in microseconds
uint64_t time_epoch_usec(uint8_t instance);
uint64_t time_epoch_usec(void) {
return time_epoch_usec(primary_instance);
}
// return true if the GPS supports vertical velocity values
bool have_vertical_velocity(uint8_t instance) const {
return state[instance].have_vertical_velocity;
}
bool have_vertical_velocity(void) const {
return have_vertical_velocity(primary_instance);
}
// the expected lag (in seconds) in the position and velocity readings from the gps
float get_lag(uint8_t instance) const;
float get_lag(void) const { return get_lag(primary_instance); }
2017-01-05 14:07:14 -04:00
// return a 3D vector defining the offset of the GPS antenna in meters relative to the body frame origin
2016-10-27 01:05:58 -03:00
const Vector3f &get_antenna_offset(uint8_t instance) const {
return _antenna_offset[instance];
}
2016-10-27 01:05:58 -03:00
const Vector3f &get_antenna_offset(void) const {
return _antenna_offset[primary_instance];
}
// set position for HIL
void setHIL(uint8_t instance, GPS_Status status, uint64_t time_epoch_ms,
const Location &location, const Vector3f &velocity, uint8_t num_sats,
uint16_t hdop);
2016-05-04 05:16:05 -03:00
// set accuracy for HIL
void setHIL_Accuracy(uint8_t instance, float vdop, float hacc, float vacc, float sacc, bool _have_vertical_velocity, uint32_t sample_ms);
2016-05-04 05:16:05 -03:00
static const struct AP_Param::GroupInfo var_info[];
// dataflash for logging, if available
DataFlash_Class *_DataFlash;
// configuration parameters
AP_Int8 _type[GPS_MAX_INSTANCES];
AP_Int8 _navfilter;
AP_Int8 _auto_switch;
AP_Int8 _min_dgps;
AP_Int16 _sbp_logmask;
AP_Int8 _inject_to;
uint32_t _last_instance_swap_ms;
AP_Int8 _sbas_mode;
AP_Int8 _min_elevation;
AP_Int8 _raw_data;
AP_Int8 _gnss_mode[2];
AP_Int16 _rate_ms[2];
AP_Int8 _save_config;
AP_Int8 _auto_config;
AP_Vector3f _antenna_offset[2];
AP_Int16 _delay_ms[2];
// handle sending of initialisation strings to the GPS
void send_blob_start(uint8_t instance, const char *_blob, uint16_t size);
void send_blob_update(uint8_t instance);
// lock out a GPS port, allowing another application to use the port
void lock_port(uint8_t instance, bool locked);
//Inject a packet of raw binary to a GPS
void inject_data(uint8_t *data, uint8_t len);
void inject_data(uint8_t instance, uint8_t *data, uint8_t len);
//MAVLink Status Sending
void send_mavlink_gps_raw(mavlink_channel_t chan);
void send_mavlink_gps2_raw(mavlink_channel_t chan);
void send_mavlink_gps_rtk(mavlink_channel_t chan);
void send_mavlink_gps2_rtk(mavlink_channel_t chan);
// Returns the index of the first unconfigured GPS (returns GPS_ALL_CONFIGURED if all instances report as being configured)
uint8_t first_unconfigured_gps(void) const;
void broadcast_first_configuration_failure_reason(void) const;
// return true if all GPS instances have finished configuration
bool all_configured(void) const {
return first_unconfigured_gps() == GPS_ALL_CONFIGURED;
}
private:
struct GPS_timing {
// the time we got our last fix in system milliseconds
uint32_t last_fix_time_ms;
// the time we got our last fix in system milliseconds
uint32_t last_message_time_ms;
};
GPS_timing timing[GPS_MAX_INSTANCES];
GPS_State state[GPS_MAX_INSTANCES];
AP_GPS_Backend *drivers[GPS_MAX_INSTANCES];
2015-01-19 09:36:35 -04:00
AP_HAL::UARTDriver *_port[GPS_MAX_INSTANCES];
/// primary GPS instance
uint8_t primary_instance:2;
/// number of GPS instances present
uint8_t num_instances:2;
// which ports are locked
uint8_t locked_ports:2;
// state of auto-detection process, per instance
struct detect_state {
uint32_t detect_started_ms;
uint32_t last_baud_change_ms;
uint8_t current_baud;
struct UBLOX_detect_state ublox_detect_state;
struct MTK_detect_state mtk_detect_state;
struct MTK19_detect_state mtk19_detect_state;
struct SIRF_detect_state sirf_detect_state;
struct NMEA_detect_state nmea_detect_state;
struct SBP_detect_state sbp_detect_state;
2016-01-18 17:54:40 -04:00
struct ERB_detect_state erb_detect_state;
} detect_state[GPS_MAX_INSTANCES];
struct {
const char *blob;
uint16_t remaining;
} initblob_state[GPS_MAX_INSTANCES];
static const uint32_t _baudrates[];
static const char _initialisation_blob[];
static const char _initialisation_raw_blob[];
void detect_instance(uint8_t instance);
void update_instance(uint8_t instance);
void _broadcast_gps_type(const char *type, uint8_t instance, int8_t baud_index);
/*
buffer for re-assembling RTCM data for GPS injection.
The 8 bit flags field in GPS_RTCM_DATA is interpreted as:
1 bit for "is fragmented"
2 bits for fragment number
5 bits for sequence number
The rtcm_buffer is allocated on first use. Once a block of data
is successfully reassembled it is injected into all active GPS
backends. This assumes we don't want more than 4*180=720 bytes
in a RTCM data block
*/
struct rtcm_buffer {
uint8_t fragments_received:4;
uint8_t sequence:5;
uint8_t fragment_count;
uint16_t total_length;
uint8_t buffer[MAVLINK_MSG_GPS_RTCM_DATA_FIELD_DATA_LEN*4];
} *rtcm_buffer;
// re-assemble GPS_RTCM_DATA message
void handle_gps_rtcm_data(const mavlink_message_t *msg);
2017-01-05 14:07:14 -04:00
// inject data into all backends
void inject_data_all(const uint8_t *data, uint16_t len);
};
#define GPS_BAUD_TIME_MS 1200