mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-14 20:58:30 -04:00
71 lines
2.8 KiB
Mathematica
71 lines
2.8 KiB
Mathematica
|
%% Set initial conditions
|
||
|
clear all;
|
||
|
load('fltTest.mat');
|
||
|
startDelayTime = 100; % number of seconds to delay filter start (used to simulate in-flight restart)
|
||
|
dt = 1/50;
|
||
|
startTime = 0.001*(IMU(1,2));
|
||
|
stopTime = 0.001*(IMU(length(IMU),2));
|
||
|
indexLimit = length(IMU);
|
||
|
magIndexlimit = length(MAG);
|
||
|
statesLog = zeros(11,indexLimit);
|
||
|
eulLog = zeros(4,indexLimit);
|
||
|
velInnovLog = zeros(4,indexLimit);
|
||
|
angErrLog = velInnovLog;
|
||
|
decInnovLog = zeros(2,magIndexlimit);
|
||
|
velInnovVarLog = velInnovLog;
|
||
|
decInnovVarLog = decInnovLog;
|
||
|
% initialise the filter to level
|
||
|
quat = [1;0;0;0];
|
||
|
states = zeros(10,1);
|
||
|
Tbn = Quat2Tbn(quat);
|
||
|
% Set the expected declination
|
||
|
measDec = 0.18;
|
||
|
% define the state covariances with the exception of the quaternion covariances
|
||
|
Sigma_velNED = 0.5; % 1 sigma uncertainty in horizontal velocity components
|
||
|
Sigma_dAngBias = 5*pi/180*dt; % 1 Sigma uncertainty in delta angle bias
|
||
|
Sigma_quatErr = 1; % 1 Sigma uncertainty in angular misalignment (rad)
|
||
|
covariance = single(diag([Sigma_quatErr*[1;1;1;1];Sigma_velNED*[1;1;1];Sigma_dAngBias*[1;1;1]].^2));
|
||
|
%% Main Loop
|
||
|
magIndex = 1;
|
||
|
time = 0;
|
||
|
tiltError = 0;
|
||
|
headingAligned = 0;
|
||
|
angErrVec = [0;0;0];
|
||
|
startIndex = max(11,ceil(startDelayTime/dt));
|
||
|
for index = startIndex:indexLimit
|
||
|
time=time+dt + startIndex*dt;
|
||
|
% read IMU measurements and correct rates using estimated bias
|
||
|
angRate = IMU(index,3:5)' - states(7:9)./dt;
|
||
|
accel = IMU(index,6:8)';
|
||
|
% predict states
|
||
|
[quat, states, Tbn, delAng, delVel] = PredictStates(quat,states,angRate,accel,dt);
|
||
|
statesLog(1,index) = time;
|
||
|
statesLog(2:11,index) = states;
|
||
|
eulLog(1,index) = time;
|
||
|
eulLog(2:4,index) = QuatToEul(quat);
|
||
|
% predict covariance matrix
|
||
|
covariance = PredictCovariance(delAng,delVel,quat,states,covariance,dt);
|
||
|
% read magnetometer measurements
|
||
|
while ((MAG(magIndex,1) < IMU(index,1)) && (magIndex < magIndexlimit))
|
||
|
magIndex = magIndex + 1;
|
||
|
% fuse magnetometer measurements if new data available and when tilt has settled
|
||
|
if ((MAG(magIndex,1) >= IMU(index,1)) && ((angErrVec(1)^2 + angErrVec(2)^2) < 0.05^2) && (index > 50))
|
||
|
magBody = 0.001*MAG(magIndex,3:5)';
|
||
|
[states,covariance,decInnov,decInnovVar] = FuseMagnetometer(states,covariance,magBody,measDec,Tbn);
|
||
|
decInnovLog(1,magIndex) = time;
|
||
|
decInnovLog(2,magIndex) = decInnov;
|
||
|
decInnovVarLog(1,magIndex) = time;
|
||
|
decInnovVarLog(2,magIndex) = decInnovVar;
|
||
|
end
|
||
|
end
|
||
|
% fuse velocity measurements - use synthetic measurements
|
||
|
measVel = [0;0;0];
|
||
|
[states,covariance,velInnov,velInnovVar] = FuseVelocity(states,covariance,measVel);
|
||
|
velInnovLog(1,index) = time;
|
||
|
velInnovLog(2:4,index) = velInnov;
|
||
|
velInnovVarLog(1,index) = time;
|
||
|
velInnovVarLog(2:4,index) = velInnovVar;
|
||
|
end
|
||
|
|
||
|
%% Generate Plots
|
||
|
PlotData;
|