ardupilot/ArduSub/radio.cpp

236 lines
8.5 KiB
C++
Raw Normal View History

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
2016-01-14 15:30:56 -04:00
#include "Sub.h"
// Function that will read the radio data, limit servos and trigger a failsafe
// ----------------------------------------------------------------------------
2016-01-14 15:30:56 -04:00
void Sub::default_dead_zones()
{
channel_roll->set_default_dead_zone(30);
channel_pitch->set_default_dead_zone(30);
#if FRAME_CONFIG == HELI_FRAME
channel_throttle->set_default_dead_zone(10);
channel_yaw->set_default_dead_zone(15);
g.rc_8.set_default_dead_zone(10);
#else
channel_throttle->set_default_dead_zone(30);
channel_yaw->set_default_dead_zone(40);
#endif
g.rc_6.set_default_dead_zone(0);
}
2016-01-14 15:30:56 -04:00
void Sub::init_rc_in()
{
channel_roll = RC_Channel::rc_channel(rcmap.roll()-1);
channel_pitch = RC_Channel::rc_channel(rcmap.pitch()-1);
channel_throttle = RC_Channel::rc_channel(rcmap.throttle()-1);
channel_yaw = RC_Channel::rc_channel(rcmap.yaw()-1);
<<<<<<< 6dafedb2d1ad5061d859a9c319fa4b69b4ac5dd9
channel_forward = RC_Channel::rc_channel(rcmap.forward()-1);
channel_strafe = RC_Channel::rc_channel(rcmap.strafe()-1);
=======
>>>>>>> Changed to ArduCopter as the base code.
// set rc channel ranges
channel_roll->set_angle(ROLL_PITCH_INPUT_MAX);
channel_pitch->set_angle(ROLL_PITCH_INPUT_MAX);
channel_yaw->set_angle(4500);
channel_throttle->set_range(g.throttle_min, THR_MAX);
<<<<<<< 6dafedb2d1ad5061d859a9c319fa4b69b4ac5dd9
channel_forward->set_angle(4500);
channel_strafe->set_angle(4500);
=======
>>>>>>> Changed to ArduCopter as the base code.
channel_roll->set_type(RC_CHANNEL_TYPE_ANGLE_RAW);
channel_pitch->set_type(RC_CHANNEL_TYPE_ANGLE_RAW);
channel_yaw->set_type(RC_CHANNEL_TYPE_ANGLE_RAW);
<<<<<<< 6dafedb2d1ad5061d859a9c319fa4b69b4ac5dd9
channel_forward->set_type(RC_CHANNEL_TYPE_ANGLE_RAW);
channel_strafe->set_type(RC_CHANNEL_TYPE_ANGLE_RAW);
=======
>>>>>>> Changed to ArduCopter as the base code.
//set auxiliary servo ranges
g.rc_5.set_range(0,1000);
g.rc_6.set_range(0,1000);
g.rc_7.set_range(0,1000);
g.rc_8.set_range(0,1000);
// set default dead zones
default_dead_zones();
// initialise throttle_zero flag
ap.throttle_zero = true;
}
// init_rc_out -- initialise motors and check if pilot wants to perform ESC calibration
2016-01-14 15:30:56 -04:00
void Sub::init_rc_out()
{
motors.set_update_rate(g.rc_speed);
motors.set_frame_orientation(g.frame_orientation);
motors.Init(); // motor initialisation
#if FRAME_CONFIG != HELI_FRAME
motors.set_throttle_range(g.throttle_min, channel_throttle->radio_min, channel_throttle->radio_max);
motors.set_hover_throttle(g.throttle_mid);
#endif
for(uint8_t i = 0; i < 5; i++) {
delay(20);
read_radio();
}
// we want the input to be scaled correctly
channel_throttle->set_range_out(0,1000);
// check if we should enter esc calibration mode
esc_calibration_startup_check();
// enable output to motors
pre_arm_rc_checks();
if (ap.pre_arm_rc_check) {
enable_motor_output();
}
// refresh auxiliary channel to function map
RC_Channel_aux::update_aux_servo_function();
// setup correct scaling for ESCs like the UAVCAN PX4ESC which
// take a proportion of speed.
hal.rcout->set_esc_scaling(channel_throttle->radio_min, channel_throttle->radio_max);
}
// enable_motor_output() - enable and output lowest possible value to motors
2016-01-14 15:30:56 -04:00
void Sub::enable_motor_output()
{
// enable motors
motors.enable();
motors.output_min();
}
2016-01-14 15:30:56 -04:00
void Sub::read_radio()
{
static uint32_t last_update_ms = 0;
uint32_t tnow_ms = millis();
if (hal.rcin->new_input()) {
last_update_ms = tnow_ms;
ap.new_radio_frame = true;
RC_Channel::set_pwm_all();
set_throttle_and_failsafe(channel_throttle->radio_in);
set_throttle_zero_flag(channel_throttle->control_in);
// flag we must have an rc receiver attached
if (!failsafe.rc_override_active) {
ap.rc_receiver_present = true;
}
// update output on any aux channels, for manual passthru
RC_Channel_aux::output_ch_all();
}else{
uint32_t elapsed = tnow_ms - last_update_ms;
// turn on throttle failsafe if no update from the RC Radio for 500ms or 2000ms if we are using RC_OVERRIDE
if (((!failsafe.rc_override_active && (elapsed >= FS_RADIO_TIMEOUT_MS)) || (failsafe.rc_override_active && (elapsed >= FS_RADIO_RC_OVERRIDE_TIMEOUT_MS))) &&
(g.failsafe_throttle && (ap.rc_receiver_present||motors.armed()) && !failsafe.radio)) {
Log_Write_Error(ERROR_SUBSYSTEM_RADIO, ERROR_CODE_RADIO_LATE_FRAME);
set_failsafe_radio(true);
}
}
}
2016-01-14 15:30:56 -04:00
void Sub::transform_manual_control_to_rc_override(int16_t x, int16_t y, int16_t z, int16_t r, uint16_t buttons) {
int16_t channels[8];
2017-02-07 19:06:36 -04:00
float rpyScale = 0.5;
2017-02-07 18:28:42 -04:00
float throttleScale = 0.8;
int16_t rpyCenter = 1500;
2017-02-07 19:06:36 -04:00
int16_t throttleBase = 1500-500*throttleScale;
uint16_t mode = buttons;
int16_t camTilt = 1500;
2017-02-07 18:28:42 -04:00
if ( mode & (1 << 4) ) {
init_arm_motors(true);
} else if ( mode & (1 << 5) ) {
init_disarm_motors();
}
channels[0] = 1500; // pitch
channels[1] = 1500; // roll
channels[2] = z*throttleScale+throttleBase; // throttle
channels[3] = r*rpyScale+rpyCenter; // yaw
channels[4] = mode; // for testing only
channels[5] = x*rpyScale+rpyCenter; // forward for ROV
channels[6] = y*rpyScale+rpyCenter; // strafe for ROV
channels[7] = camTilt; // camera tilt
// record that rc are overwritten so we can trigger a failsafe if we lose contact with groundstation
failsafe.rc_override_active = hal.rcin->set_overrides(channels, 8);
}
#define FS_COUNTER 3 // radio failsafe kicks in after 3 consecutive throttle values below failsafe_throttle_value
2016-01-14 15:30:56 -04:00
void Sub::set_throttle_and_failsafe(uint16_t throttle_pwm)
{
// if failsafe not enabled pass through throttle and exit
if(g.failsafe_throttle == FS_THR_DISABLED) {
channel_throttle->set_pwm(throttle_pwm);
return;
}
//check for low throttle value
if (throttle_pwm < (uint16_t)g.failsafe_throttle_value) {
// if we are already in failsafe or motors not armed pass through throttle and exit
if (failsafe.radio || !(ap.rc_receiver_present || motors.armed())) {
channel_throttle->set_pwm(throttle_pwm);
return;
}
// check for 3 low throttle values
// Note: we do not pass through the low throttle until 3 low throttle values are recieved
failsafe.radio_counter++;
if( failsafe.radio_counter >= FS_COUNTER ) {
failsafe.radio_counter = FS_COUNTER; // check to ensure we don't overflow the counter
set_failsafe_radio(true);
channel_throttle->set_pwm(throttle_pwm); // pass through failsafe throttle
}
}else{
// we have a good throttle so reduce failsafe counter
failsafe.radio_counter--;
if( failsafe.radio_counter <= 0 ) {
failsafe.radio_counter = 0; // check to ensure we don't underflow the counter
// disengage failsafe after three (nearly) consecutive valid throttle values
if (failsafe.radio) {
set_failsafe_radio(false);
}
}
// pass through throttle
channel_throttle->set_pwm(throttle_pwm);
}
}
#define THROTTLE_ZERO_DEBOUNCE_TIME_MS 400
// set_throttle_zero_flag - set throttle_zero flag from debounced throttle control
// throttle_zero is used to determine if the pilot intends to shut down the motors
// Basically, this signals when we are not flying. We are either on the ground
// or the pilot has shut down the copter in the air and it is free-falling
2016-01-14 15:30:56 -04:00
void Sub::set_throttle_zero_flag(int16_t throttle_control)
{
static uint32_t last_nonzero_throttle_ms = 0;
uint32_t tnow_ms = millis();
// if not using throttle interlock and non-zero throttle and not E-stopped,
// or using motor interlock and it's enabled, then motors are running,
// and we are flying. Immediately set as non-zero
if ((!ap.using_interlock && (throttle_control > 0) && !ap.motor_emergency_stop) || (ap.using_interlock && motors.get_interlock())) {
last_nonzero_throttle_ms = tnow_ms;
ap.throttle_zero = false;
} else if (tnow_ms - last_nonzero_throttle_ms > THROTTLE_ZERO_DEBOUNCE_TIME_MS) {
ap.throttle_zero = true;
}
}