ardupilot/ArduPlane/pullup.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

240 lines
8.8 KiB
C++
Raw Normal View History

2024-08-30 00:30:48 -03:00
#include "Plane.h"
/*
support for pullup after an alitude wait. Used for high altitude gliders
*/
#if AP_PLANE_GLIDER_PULLUP_ENABLED
// Pullup control parameters
const AP_Param::GroupInfo GliderPullup::var_info[] = {
// @Param: ENABLE
// @DisplayName: Enable pullup after altitude wait
// @Description: Enable pullup after altitude wait
// @Values: 0:Disabled, 1:Enabled
// @User: Advanced
AP_GROUPINFO_FLAGS("ENABLE", 1, GliderPullup, enable, 0, AP_PARAM_FLAG_ENABLE),
// @Param: ELEV_OFS
// @DisplayName: Elevator deflection used before starting pullup
// @Description: Elevator deflection offset from -1 to 1 while waiting for airspeed to rise before starting close loop control of the pullup.
// @Range: -1.0 1.0
// @User: Advanced
AP_GROUPINFO("ELEV_OFS", 2, GliderPullup, elev_offset, 0.1f),
// @Param: NG_LIM
// @DisplayName: Maximum normal load factor during pullup
// @Description: This is the nominal maximum value of normal load factor used during the closed loop pitch rate control of the pullup.
// @Range: 1.0 4.0
// @User: Advanced
AP_GROUPINFO("NG_LIM", 3, GliderPullup, ng_limit, 2.0f),
// @Param: NG_JERK_LIM
// @DisplayName: Maximum normal load factor rate of change during pullup
// @Description: The normal load factor used for closed loop pitch rate control of the pullup will be ramped up to the value set by PUP_NG_LIM at the rate of change set by this parameter. The parameter value specified will be scaled internally by 1/EAS2TAS.
// @Units: 1/s
// @Range: 0.1 10.0
// @User: Advanced
AP_GROUPINFO("NG_JERK_LIM", 4, GliderPullup, ng_jerk_limit, 4.0f),
// @Param: PITCH
// @DisplayName: Target pitch angle during pullup
// @Description: The vehicle will attempt achieve this pitch angle during the pull-up maneouvre.
// @Units: deg
// @Range: -5 15
// @User: Advanced
AP_GROUPINFO("PITCH", 5, GliderPullup, pitch_dem, 3),
// @Param: ARSPD_START
// @DisplayName: Pullup target airspeed
// @Description: Target airspeed for initial airspeed wait
// @Units: m/s
// @Range: 0 100
// @User: Advanced
AP_GROUPINFO("ARSPD_START", 6, GliderPullup, airspeed_start, 30),
// @Param: PITCH_START
// @DisplayName: Pullup target pitch
// @Description: Target pitch for initial pullup
// @Units: deg
// @Range: -80 0
// @User: Advanced
AP_GROUPINFO("PITCH_START", 7, GliderPullup, pitch_start, -60),
AP_GROUPEND
};
// constructor
GliderPullup::GliderPullup(void)
{
AP_Param::setup_object_defaults(this, var_info);
}
/*
return true if in a pullup manoeuvre at the end of NAV_ALTITUDE_WAIT
*/
bool GliderPullup::in_pullup(void) const
{
return plane.control_mode == &plane.mode_auto &&
plane.mission.get_current_nav_cmd().id == MAV_CMD_NAV_ALTITUDE_WAIT &&
stage != Stage::NONE;
}
/*
start a pullup maneouvre, called when NAV_ALTITUDE_WAIT has reached
altitude or exceeded descent rate
*/
bool GliderPullup::pullup_start(void)
{
if (enable != 1) {
return false;
}
// release balloon
SRV_Channels::set_output_scaled(SRV_Channel::k_lift_release, 100);
stage = Stage::WAIT_AIRSPEED;
plane.auto_state.idle_mode = false;
float aspeed;
if (!plane.ahrs.airspeed_estimate(aspeed)) {
aspeed = -1;
}
gcs().send_text(MAV_SEVERITY_INFO, "Start pullup airspeed %.1fm/s at %.1fm AMSL", aspeed, plane.current_loc.alt*0.01);
return true;
}
/*
first stage pullup from balloon release, verify completion
*/
bool GliderPullup::verify_pullup(void)
{
const auto &ahrs = plane.ahrs;
const auto &current_loc = plane.current_loc;
const auto &aparm = plane.aparm;
switch (stage) {
case Stage::WAIT_AIRSPEED: {
float aspeed;
if (ahrs.airspeed_estimate(aspeed) && aspeed > airspeed_start) {
gcs().send_text(MAV_SEVERITY_INFO, "Pullup airspeed %.1fm/s alt %.1fm AMSL", aspeed, current_loc.alt*0.01);
stage = Stage::WAIT_PITCH;
}
return false;
}
case Stage::WAIT_PITCH: {
if (ahrs.pitch_sensor*0.01 > pitch_start && fabsf(ahrs.roll_sensor*0.01) < 90) {
gcs().send_text(MAV_SEVERITY_INFO, "Pullup pitch p=%.1f r=%.1f alt %.1fm AMSL",
ahrs.pitch_sensor*0.01,
ahrs.roll_sensor*0.01,
current_loc.alt*0.01);
stage = Stage::WAIT_LEVEL;
}
return false;
}
case Stage::PUSH_NOSE_DOWN: {
if (fabsf(ahrs.roll_sensor*0.01) < aparm.roll_limit) {
stage = Stage::WAIT_LEVEL;
}
return false;
}
case Stage::WAIT_LEVEL: {
// When pitch has raised past lower limit used by speed controller, wait for airspeed to approach
// target value before handing over control of pitch demand to speed controller
bool pitchup_complete = ahrs.pitch_sensor*0.01 > MIN(0, aparm.pitch_limit_min);
const float pitch_lag_time = 1.0f * sqrtf(ahrs.get_EAS2TAS());
float aspeed;
const float aspeed_derivative = (ahrs.get_accel().x + GRAVITY_MSS * ahrs.get_DCM_rotation_body_to_ned().c.x) / ahrs.get_EAS2TAS();
bool airspeed_low = ahrs.airspeed_estimate(aspeed) ? (aspeed + aspeed_derivative * pitch_lag_time) < 0.01f * (float)plane.target_airspeed_cm : true;
bool roll_control_lost = fabsf(ahrs.roll_sensor*0.01) > aparm.roll_limit;
if (pitchup_complete && airspeed_low && !roll_control_lost) {
gcs().send_text(MAV_SEVERITY_INFO, "Pullup level r=%.1f p=%.1f alt %.1fm AMSL",
ahrs.roll_sensor*0.01, ahrs.pitch_sensor*0.01, current_loc.alt*0.01);
break;
} else if (pitchup_complete && roll_control_lost) {
// push nose down and wait to get roll control back
gcs().send_text(MAV_SEVERITY_ALERT, "Pullup level roll bad r=%.1f p=%.1f",
ahrs.roll_sensor*0.01,
ahrs.pitch_sensor*0.01);
stage = Stage::PUSH_NOSE_DOWN;
}
return false;
}
case Stage::NONE:
break;
}
// all done
stage = Stage::NONE;
return true;
}
/*
stabilize during pullup from balloon drop
*/
void GliderPullup::stabilize_pullup(void)
{
const float speed_scaler = plane.get_speed_scaler();
switch (stage) {
case Stage::WAIT_AIRSPEED: {
plane.pitchController.reset_I();
plane.yawController.reset_I();
SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, elev_offset*4500);
SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, 0);
plane.nav_pitch_cd = 0;
plane.nav_roll_cd = 0;
SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, plane.rollController.get_rate_out(0, speed_scaler));
ng_demand = 0.0;
break;
}
case Stage::WAIT_PITCH: {
plane.yawController.reset_I();
plane.nav_roll_cd = 0;
plane.nav_pitch_cd = 0;
SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, 0);
SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, plane.rollController.get_rate_out(0, speed_scaler));
float aspeed;
const auto &ahrs = plane.ahrs;
if (ahrs.airspeed_estimate(aspeed)) {
// apply a rate of change limit to the ng pullup demand
ng_demand += MAX(ng_jerk_limit / ahrs.get_EAS2TAS(), 0.1f) * plane.scheduler.get_loop_period_s();
ng_demand = MIN(ng_demand, ng_limit);
const float VTAS_ref = ahrs.get_EAS2TAS() * aspeed;
const float pullup_accel = ng_demand * GRAVITY_MSS;
const float demanded_rate_dps = degrees(pullup_accel / VTAS_ref);
const uint32_t elev_trim_offset_cd = 4500.0f * elev_offset * (1.0f - ng_demand / ng_limit);
SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, elev_trim_offset_cd + plane.pitchController.get_rate_out(demanded_rate_dps, speed_scaler));
} else {
SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, elev_offset*4500);
}
break;
}
case Stage::PUSH_NOSE_DOWN: {
plane.nav_pitch_cd = plane.aparm.pitch_limit_min*100;
plane.stabilize_pitch();
plane.nav_roll_cd = 0;
plane.stabilize_roll();
plane.stabilize_yaw();
ng_demand = 0.0f;
break;
}
case Stage::WAIT_LEVEL:
plane.nav_pitch_cd = MAX((plane.aparm.pitch_limit_min + 5), pitch_dem)*100;
plane.stabilize_pitch();
plane.nav_roll_cd = 0;
plane.stabilize_roll();
plane.stabilize_yaw();
ng_demand = 0.0f;
break;
case Stage::NONE:
break;
}
// we have done stabilisation
plane.last_stabilize_ms = AP_HAL::millis();
}
#endif // AP_PLANE_GLIDER_PULLUP_ENABLED