2013-05-29 20:51:34 -03:00
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
2013-08-29 02:34:34 -03:00
/*
This program is free software : you can redistribute it and / or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation , either version 3 of the License , or
( at your option ) any later version .
This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY ; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
GNU General Public License for more details .
You should have received a copy of the GNU General Public License
along with this program . If not , see < http : //www.gnu.org/licenses/>.
*/
2012-04-02 05:26:37 -03:00
/*
2012-08-21 23:19:52 -03:00
* AP_MotorsHeli . cpp - ArduCopter motors library
* Code by RandyMackay . DIYDrones . com
*
*/
2012-10-26 20:59:07 -03:00
# include <stdlib.h>
# include <AP_HAL.h>
2012-04-02 05:26:37 -03:00
# include "AP_MotorsHeli.h"
2012-10-26 20:59:07 -03:00
extern const AP_HAL : : HAL & hal ;
2012-04-02 05:26:37 -03:00
const AP_Param : : GroupInfo AP_MotorsHeli : : var_info [ ] PROGMEM = {
2012-08-21 23:19:52 -03:00
// @Param: SV1_POS
// @DisplayName: Servo 1 Position
2013-11-04 00:13:54 -04:00
// @Description: Angular location of swash servo #1
2012-08-21 23:19:52 -03:00
// @Range: -180 180
// @Units: Degrees
// @User: Standard
// @Increment: 1
2013-11-04 07:53:27 -04:00
AP_GROUPINFO ( " SV1_POS " , 1 , AP_MotorsHeli , _servo1_pos , AP_MOTORS_HELI_SERVO1_POS ) ,
2012-08-21 23:19:52 -03:00
// @Param: SV2_POS
// @DisplayName: Servo 2 Position
2013-11-04 00:13:54 -04:00
// @Description: Angular location of swash servo #2
2012-08-21 23:19:52 -03:00
// @Range: -180 180
// @Units: Degrees
// @User: Standard
// @Increment: 1
2013-11-04 07:53:27 -04:00
AP_GROUPINFO ( " SV2_POS " , 2 , AP_MotorsHeli , _servo2_pos , AP_MOTORS_HELI_SERVO2_POS ) ,
2012-08-21 23:19:52 -03:00
// @Param: SV3_POS
// @DisplayName: Servo 3 Position
2013-11-04 00:13:54 -04:00
// @Description: Angular location of swash servo #3
2012-08-21 23:19:52 -03:00
// @Range: -180 180
// @Units: Degrees
// @User: Standard
// @Increment: 1
2013-11-04 07:53:27 -04:00
AP_GROUPINFO ( " SV3_POS " , 3 , AP_MotorsHeli , _servo3_pos , AP_MOTORS_HELI_SERVO3_POS ) ,
2012-08-21 23:19:52 -03:00
// @Param: ROL_MAX
2013-11-04 00:13:54 -04:00
// @DisplayName: Swash Roll Angle Max
// @Description: Maximum roll angle of the swash plate
2012-08-21 23:19:52 -03:00
// @Range: 0 18000
2013-11-04 00:13:54 -04:00
// @Units: Centi-Degrees
// @Increment: 100
2012-08-21 23:19:52 -03:00
// @User: Advanced
2013-11-04 07:53:27 -04:00
AP_GROUPINFO ( " ROL_MAX " , 4 , AP_MotorsHeli , _roll_max , AP_MOTORS_HELI_SWASH_ROLL_MAX ) ,
2012-08-21 23:19:52 -03:00
// @Param: PIT_MAX
2013-11-04 00:13:54 -04:00
// @DisplayName: Swash Pitch Angle Max
// @Description: Maximum pitch angle of the swash plate
2012-08-21 23:19:52 -03:00
// @Range: 0 18000
2013-11-04 00:13:54 -04:00
// @Units: Centi-Degrees
// @Increment: 100
2012-08-21 23:19:52 -03:00
// @User: Advanced
2013-11-04 07:53:27 -04:00
AP_GROUPINFO ( " PIT_MAX " , 5 , AP_MotorsHeli , _pitch_max , AP_MOTORS_HELI_SWASH_PITCH_MAX ) ,
2012-08-21 23:19:52 -03:00
// @Param: COL_MIN
// @DisplayName: Collective Pitch Minimum
2013-11-04 00:13:54 -04:00
// @Description: Lowest possible servo position for the swashplate
2012-08-21 23:19:52 -03:00
// @Range: 1000 2000
// @Units: PWM
// @Increment: 1
// @User: Standard
2013-11-04 07:53:27 -04:00
AP_GROUPINFO ( " COL_MIN " , 6 , AP_MotorsHeli , _collective_min , AP_MOTORS_HELI_COLLECTIVE_MIN ) ,
2012-08-21 23:19:52 -03:00
// @Param: COL_MAX
// @DisplayName: Collective Pitch Maximum
2013-11-04 00:13:54 -04:00
// @Description: Highest possible servo position for the swashplate
2012-08-21 23:19:52 -03:00
// @Range: 1000 2000
// @Units: PWM
// @Increment: 1
// @User: Standard
2013-11-04 07:53:27 -04:00
AP_GROUPINFO ( " COL_MAX " , 7 , AP_MotorsHeli , _collective_max , AP_MOTORS_HELI_COLLECTIVE_MAX ) ,
2012-08-21 23:19:52 -03:00
// @Param: COL_MID
// @DisplayName: Collective Pitch Mid-Point
2013-11-04 00:13:54 -04:00
// @Description: Swash servo position corresponding to zero collective pitch (or zero lift for Assymetrical blades)
2012-08-21 23:19:52 -03:00
// @Range: 1000 2000
// @Units: PWM
// @Increment: 1
// @User: Standard
2013-11-04 07:53:27 -04:00
AP_GROUPINFO ( " COL_MID " , 8 , AP_MotorsHeli , _collective_mid , AP_MOTORS_HELI_COLLECTIVE_MID ) ,
2012-08-21 23:19:52 -03:00
2013-07-22 16:23:16 -03:00
// @Param: TAIL_TYPE
// @DisplayName: Tail Type
// @Description: Tail type selection. Simpler yaw controller used if external gyro is selected
2013-11-18 22:23:07 -04:00
// @Values: 0:Servo only,1:Servo with ExtGyro,2:DirectDrive VarPitch,3:DirectDrive FixedPitch
2012-08-21 23:19:52 -03:00
// @User: Standard
2013-07-22 16:23:16 -03:00
AP_GROUPINFO ( " TAIL_TYPE " , 9 , AP_MotorsHeli , _tail_type , AP_MOTORS_HELI_TAILTYPE_SERVO ) ,
2012-08-21 23:19:52 -03:00
// @Param: SWASH_TYPE
2013-11-04 00:13:54 -04:00
// @DisplayName: Swash Type
// @Description: Swash Type Setting - either 3-servo CCPM or H1 Mechanical Mixing
// @Values: 0:3-Servo CCPM, 1:H1 Mechanical Mixing
2012-08-21 23:19:52 -03:00
// @User: Standard
2013-11-04 07:53:27 -04:00
AP_GROUPINFO ( " SWASH_TYPE " , 10 , AP_MotorsHeli , _swash_type , AP_MOTORS_HELI_SWASH_CCPM ) ,
2012-08-21 23:19:52 -03:00
2013-11-07 03:07:53 -04:00
// @Param: GYR_GAIN
// @DisplayName: External Gyro Gain
// @Description: PWM sent to external gyro on ch7 when tail type is Servo w/ ExtGyro
2013-11-08 04:32:50 -04:00
// @Range: 0 1000
2012-08-21 23:19:52 -03:00
// @Units: PWM
2013-11-07 03:07:53 -04:00
// @Increment: 1
2012-08-21 23:19:52 -03:00
// @User: Standard
2013-11-07 03:07:53 -04:00
AP_GROUPINFO ( " GYR_GAIN " , 11 , AP_MotorsHeli , _ext_gyro_gain , AP_MOTORS_HELI_EXT_GYRO_GAIN ) ,
2012-08-21 23:19:52 -03:00
// @Param: SV_MAN
// @DisplayName: Manual Servo Mode
2013-11-04 00:13:54 -04:00
// @Description: Pass radio inputs directly to servos for set-up. Do not set this manually!
2012-08-21 23:19:52 -03:00
// @Values: 0:Disabled,1:Enabled
// @User: Standard
2013-11-04 07:53:27 -04:00
AP_GROUPINFO ( " SV_MAN " , 12 , AP_MotorsHeli , _servo_manual , 0 ) ,
2012-08-21 23:19:52 -03:00
// @Param: PHANG
// @DisplayName: Swashplate Phase Angle Compensation
2013-11-04 00:13:54 -04:00
// @Description: Phase angle correction for rotor head. If pitching the swash forward induces a roll, this can be correct the problem
2012-08-21 23:19:52 -03:00
// @Range: -90 90
// @Units: Degrees
// @User: Advanced
// @Increment: 1
2013-11-04 07:53:27 -04:00
AP_GROUPINFO ( " PHANG " , 13 , AP_MotorsHeli , _phase_angle , 0 ) ,
2012-08-21 23:19:52 -03:00
// @Param: COLYAW
// @DisplayName: Collective-Yaw Mixing
2013-11-04 00:13:54 -04:00
// @Description: Feed-forward compensation to automatically add rudder input when collective pitch is increased. Can be positive or negative depending on mechanics.
2013-07-22 15:23:10 -03:00
// @Range: -10 10
2013-11-04 07:53:27 -04:00
AP_GROUPINFO ( " COLYAW " , 14 , AP_MotorsHeli , _collective_yaw_effect , 0 ) ,
2012-08-21 23:19:52 -03:00
// @Param: GOV_SETPOINT
// @DisplayName: External Motor Governor Setpoint
2013-11-04 00:13:54 -04:00
// @Description: PWM passed to the external motor governor when external governor is enabled
2013-11-07 03:07:53 -04:00
// @Range: 0 1000
2012-08-21 23:19:52 -03:00
// @Units: PWM
// @Increment: 10
// @User: Standard
2013-11-07 03:07:53 -04:00
AP_GROUPINFO ( " RSC_SETPOINT " , 15 , AP_MotorsHeli , _rsc_setpoint , AP_MOTORS_HELI_RSC_SETPOINT ) ,
2012-08-21 23:19:52 -03:00
// @Param: RSC_MODE
// @DisplayName: Rotor Speed Control Mode
2013-11-07 03:07:53 -04:00
// @Description: Controls the source of the desired rotor speed, either ch8 or RSC_SETPOINT
// @Values: 0:None, 1:Ch8 Input, 2:SetPoint
2012-08-21 23:19:52 -03:00
// @User: Standard
2013-11-04 07:53:27 -04:00
AP_GROUPINFO ( " RSC_MODE " , 16 , AP_MotorsHeli , _rsc_mode , AP_MOTORS_HELI_RSC_MODE_CH8_PASSTHROUGH ) ,
2012-08-21 23:19:52 -03:00
2013-11-07 03:07:53 -04:00
// 17 was RSC_RAMP_RATE which has been replaced by RSC_RAMP_TIME
2012-08-21 23:19:52 -03:00
// @Param: FLYBAR_MODE
// @DisplayName: Flybar Mode Selector
2013-11-04 00:13:54 -04:00
// @Description: Flybar present or not. Affects attitude controller used during ACRO flight mode
// @Range: 0:NoFlybar 1:Flybar
2012-08-21 23:19:52 -03:00
// @User: Standard
2013-11-04 07:53:27 -04:00
AP_GROUPINFO ( " FLYBAR_MODE " , 18 , AP_MotorsHeli , _flybar_mode , AP_MOTORS_HELI_NOFLYBAR ) ,
2013-11-06 08:39:10 -04:00
2013-11-09 01:25:06 -04:00
// 19,20 - was STAB_COL_MIN, STAB_COL_MAX now moved to main code's parameter list
2012-08-21 23:19:52 -03:00
2013-11-06 08:39:10 -04:00
// @Param: LAND_COL_MIN
// @DisplayName: Landing Collective Minimum
// @Description: Minimum collective position while landed or landing
// @Range: 0 500
// @Units: pwm
// @Increment: 1
// @User: Standard
AP_GROUPINFO ( " LAND_COL_MIN " , 21 , AP_MotorsHeli , _land_collective_min , AP_MOTORS_HELI_LAND_COLLECTIVE_MIN ) ,
2013-11-07 03:07:53 -04:00
// @Param: RSC_RAMP_TIME
// @DisplayName: RSC Ramp Time
2013-11-09 00:38:33 -04:00
// @Description: Time in seconds for the output to the main rotor's ESC to reach full speed
2013-11-07 03:07:53 -04:00
// @Range: 0 60
// @Units: Seconds
// @User: Standard
AP_GROUPINFO ( " RSC_RAMP_TIME " , 22 , AP_MotorsHeli , _rsc_ramp_time , AP_MOTORS_HELI_RSC_RAMP_TIME ) ,
2013-11-09 00:38:33 -04:00
// @Param: RSC_RUNUP_TIME
// @DisplayName: RSC Runup Time
// @Description: Time in seconds for the main rotor to reach full speed. Must be longer than RSC_RAMP_TIME
// @Range: 0 60
// @Units: Seconds
// @User: Standard
AP_GROUPINFO ( " RSC_RUNUP_TIME " , 23 , AP_MotorsHeli , _rsc_runup_time , AP_MOTORS_HELI_RSC_RUNUP_TIME ) ,
2013-11-07 03:07:53 -04:00
// @Param: TAIL_SPEED
// @DisplayName: Direct Drive VarPitch Tail ESC speed
// @Description: Direct Drive VarPitch Tail ESC speed. Only used when TailType is DirectDrive VarPitch
// @Range: 0 1000
// @Units: PWM
// @Increment: 1
// @User: Standard
2014-01-09 18:21:06 -04:00
AP_GROUPINFO ( " TAIL_SPEED " , 24 , AP_MotorsHeli , _direct_drive_tailspeed , AP_MOTOR_HELI_DDTAIL_DEFAULT ) ,
2013-11-07 03:07:53 -04:00
2012-04-02 05:26:37 -03:00
AP_GROUPEND
} ;
2013-11-04 07:53:27 -04:00
//
// public methods
//
2012-04-02 05:26:37 -03:00
// init
void AP_MotorsHeli : : Init ( )
{
2012-08-21 23:19:52 -03:00
// set update rate
set_update_rate ( _speed_hz ) ;
2013-11-04 07:53:27 -04:00
// ensure inputs are not passed through to servos
_servo_manual = 0 ;
2013-11-07 03:07:53 -04:00
// initialise some scalers
recalc_scalers ( ) ;
2013-11-04 07:53:27 -04:00
// initialise swash plate
init_swash ( ) ;
2014-02-07 09:02:01 -04:00
// disable channels 7 and 8 from being used by RC_Channel_aux
RC_Channel_aux : : disable_aux_channel ( _motor_to_channel_map [ AP_MOTORS_HELI_AUX ] ) ;
RC_Channel_aux : : disable_aux_channel ( _motor_to_channel_map [ AP_MOTORS_HELI_RSC ] ) ;
2012-04-02 05:26:37 -03:00
}
2012-09-13 09:31:13 -03:00
// set update rate to motors - a value in hertz
2012-04-02 05:26:37 -03:00
void AP_MotorsHeli : : set_update_rate ( uint16_t speed_hz )
{
2012-08-21 23:19:52 -03:00
// record requested speed
_speed_hz = speed_hz ;
2012-04-02 05:26:37 -03:00
2012-08-21 23:19:52 -03:00
// setup fast channels
2013-01-10 00:52:46 -04:00
uint32_t mask =
2014-02-10 02:59:39 -04:00
1U < < pgm_read_byte ( & _motor_to_channel_map [ AP_MOTORS_MOT_1 ] ) |
1U < < pgm_read_byte ( & _motor_to_channel_map [ AP_MOTORS_MOT_2 ] ) |
1U < < pgm_read_byte ( & _motor_to_channel_map [ AP_MOTORS_MOT_3 ] ) |
1U < < pgm_read_byte ( & _motor_to_channel_map [ AP_MOTORS_MOT_4 ] ) ;
2013-01-10 00:52:46 -04:00
hal . rcout - > set_freq ( mask , _speed_hz ) ;
2012-04-02 05:26:37 -03:00
}
2012-08-21 23:19:52 -03:00
// enable - starts allowing signals to be sent to motors
2012-04-02 05:26:37 -03:00
void AP_MotorsHeli : : enable ( )
{
2012-08-21 23:19:52 -03:00
// enable output channels
2014-02-10 02:59:39 -04:00
hal . rcout - > enable_ch ( pgm_read_byte ( & _motor_to_channel_map [ AP_MOTORS_MOT_1 ] ) ) ; // swash servo 1
hal . rcout - > enable_ch ( pgm_read_byte ( & _motor_to_channel_map [ AP_MOTORS_MOT_2 ] ) ) ; // swash servo 2
hal . rcout - > enable_ch ( pgm_read_byte ( & _motor_to_channel_map [ AP_MOTORS_MOT_3 ] ) ) ; // swash servo 3
hal . rcout - > enable_ch ( pgm_read_byte ( & _motor_to_channel_map [ AP_MOTORS_MOT_4 ] ) ) ; // yaw
2013-07-22 16:23:16 -03:00
hal . rcout - > enable_ch ( AP_MOTORS_HELI_AUX ) ; // output for gyro gain or direct drive variable pitch tail motor
hal . rcout - > enable_ch ( AP_MOTORS_HELI_RSC ) ; // output for main rotor esc
2012-04-02 05:26:37 -03:00
}
// output_min - sends minimum values out to the motors
void AP_MotorsHeli : : output_min ( )
{
2012-08-21 23:19:52 -03:00
// move swash to mid
move_swash ( 0 , 0 , 500 , 0 ) ;
2013-11-06 08:39:10 -04:00
// override limits flags
limit . roll_pitch = true ;
limit . yaw = true ;
limit . throttle_lower = true ;
limit . throttle_upper = false ;
2012-04-02 05:26:37 -03:00
}
2014-04-28 04:29:49 -03:00
// output_test - spin a motor at the pwm value specified
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
void AP_MotorsHeli : : output_test ( uint8_t motor_seq , int16_t pwm )
2012-04-02 05:26:37 -03:00
{
2014-04-28 04:29:49 -03:00
// exit immediately if not armed
if ( ! _flags . armed ) {
return ;
2012-08-21 23:19:52 -03:00
}
2014-04-28 04:29:49 -03:00
// output to motors and servos
switch ( motor_seq ) {
case 1 :
// swash servo 1
hal . rcout - > write ( pgm_read_byte ( & _motor_to_channel_map [ AP_MOTORS_MOT_1 ] ) , pwm ) ;
break ;
case 2 :
// swash servo 2
hal . rcout - > write ( pgm_read_byte ( & _motor_to_channel_map [ AP_MOTORS_MOT_2 ] ) , pwm ) ;
break ;
case 3 :
// swash servo 3
hal . rcout - > write ( pgm_read_byte ( & _motor_to_channel_map [ AP_MOTORS_MOT_3 ] ) , pwm ) ;
break ;
case 4 :
// external gyro & tail servo
if ( _tail_type = = AP_MOTORS_HELI_TAILTYPE_SERVO_EXTGYRO ) {
write_aux ( _ext_gyro_gain ) ;
}
hal . rcout - > write ( pgm_read_byte ( & _motor_to_channel_map [ AP_MOTORS_MOT_4 ] ) , pwm ) ;
break ;
case 5 :
// main rotor
hal . rcout - > write ( pgm_read_byte ( & _motor_to_channel_map [ AP_MOTORS_HELI_RSC ] ) , pwm ) ;
break ;
default :
// do nothing
break ;
2012-08-21 23:19:52 -03:00
}
2012-04-02 05:26:37 -03:00
}
2013-11-04 07:53:27 -04:00
// allow_arming - returns true if main rotor is spinning and it is ok to arm
2014-01-30 03:30:04 -04:00
bool AP_MotorsHeli : : allow_arming ( ) const
2013-11-04 07:53:27 -04:00
{
// ensure main rotor has started
2014-02-10 00:22:38 -04:00
if ( _rsc_mode ! = AP_MOTORS_HELI_RSC_MODE_NONE & & _servo_rsc . control_in > 0 ) {
2013-11-04 07:53:27 -04:00
return false ;
}
// all other cases it is ok to arm
return true ;
}
2013-11-08 04:29:54 -04:00
// set_desired_rotor_speed - sets target rotor speed as a number from 0 ~ 1000
void AP_MotorsHeli : : set_desired_rotor_speed ( int16_t desired_speed )
{
_rotor_desired = desired_speed ;
}
2013-11-06 08:39:10 -04:00
// return true if the main rotor is up to speed
2014-01-30 03:30:04 -04:00
bool AP_MotorsHeli : : motor_runup_complete ( ) const
2013-11-06 08:39:10 -04:00
{
// if we have no control of motors, assume pilot has spun them up
if ( _rsc_mode = = AP_MOTORS_HELI_RSC_MODE_NONE ) {
return true ;
}
return _heliflags . motor_runup_complete ;
}
2013-11-07 03:07:53 -04:00
// recalc_scalers - recalculates various scalers used. Should be called at about 1hz to allow users to see effect of changing parameters
void AP_MotorsHeli : : recalc_scalers ( )
{
// recalculate rotor ramp up increment
if ( _rsc_ramp_time < = 0 ) {
_rsc_ramp_time = 1 ;
}
2014-05-11 20:18:16 -03:00
_rsc_ramp_increment = 1000.0f / ( _rsc_ramp_time / _dt ) ;
2013-11-07 03:07:53 -04:00
2013-11-09 00:38:33 -04:00
// recalculate rotor runup increment
if ( _rsc_runup_time < = 0 ) {
_rsc_runup_time = 1 ;
}
if ( _rsc_runup_time < _rsc_ramp_time ) {
_rsc_runup_time = _rsc_ramp_time ;
}
_rsc_runup_increment = 1000.0f / ( _rsc_runup_time * 100.0f ) ;
2013-11-07 03:07:53 -04:00
}
2013-11-04 07:53:27 -04:00
//
// protected methods
//
// output_armed - sends commands to the motors
void AP_MotorsHeli : : output_armed ( )
{
// if manual override (i.e. when setting up swash), pass pilot commands straight through to swash
if ( _servo_manual = = 1 ) {
2014-02-10 00:22:38 -04:00
_rc_roll . servo_out = _rc_roll . control_in ;
_rc_pitch . servo_out = _rc_pitch . control_in ;
_rc_throttle . servo_out = _rc_throttle . control_in ;
_rc_yaw . servo_out = _rc_yaw . control_in ;
2013-11-04 07:53:27 -04:00
}
2014-02-10 00:22:38 -04:00
_rc_roll . calc_pwm ( ) ;
_rc_pitch . calc_pwm ( ) ;
_rc_throttle . calc_pwm ( ) ;
_rc_yaw . calc_pwm ( ) ;
2013-11-04 07:53:27 -04:00
2014-02-10 00:22:38 -04:00
move_swash ( _rc_roll . servo_out , _rc_pitch . servo_out , _rc_throttle . servo_out , _rc_yaw . servo_out ) ;
2013-11-04 07:53:27 -04:00
2013-11-08 04:29:54 -04:00
// update rotor and direct drive esc speeds
rsc_control ( ) ;
2013-11-04 07:53:27 -04:00
}
// output_disarmed - sends commands to the motors
void AP_MotorsHeli : : output_disarmed ( )
{
// for helis - armed or disarmed we allow servos to move
output_armed ( ) ;
}
//
// private methods
//
2012-04-02 05:26:37 -03:00
// reset_swash - free up swash for maximum movements. Used for set-up
void AP_MotorsHeli : : reset_swash ( )
{
2012-08-21 23:19:52 -03:00
// free up servo ranges
2014-02-10 00:22:38 -04:00
_servo_1 . radio_min = 1000 ;
_servo_1 . radio_max = 2000 ;
_servo_2 . radio_min = 1000 ;
_servo_2 . radio_max = 2000 ;
_servo_3 . radio_min = 1000 ;
_servo_3 . radio_max = 2000 ;
2012-08-21 23:19:52 -03:00
2013-11-04 07:53:27 -04:00
// calculate factors based on swash type and servo position
calculate_roll_pitch_collective_factors ( ) ;
2012-08-21 23:19:52 -03:00
// set roll, pitch and throttle scaling
2013-01-10 14:42:24 -04:00
_roll_scaler = 1.0f ;
_pitch_scaler = 1.0f ;
2014-02-10 00:22:38 -04:00
_collective_scalar = ( ( float ) ( _rc_throttle . radio_max - _rc_throttle . radio_min ) ) / 1000.0f ;
2013-11-04 07:53:27 -04:00
_collective_scalar_manual = 1.0f ;
2012-08-21 23:19:52 -03:00
// we must be in set-up mode so mark swash as uninitialised
2013-11-04 07:53:27 -04:00
_heliflags . swash_initialised = false ;
2012-04-02 05:26:37 -03:00
}
// init_swash - initialise the swash plate
void AP_MotorsHeli : : init_swash ( )
{
2012-08-21 23:19:52 -03:00
// swash servo initialisation
2014-02-10 00:22:38 -04:00
_servo_1 . set_range ( 0 , 1000 ) ;
_servo_2 . set_range ( 0 , 1000 ) ;
_servo_3 . set_range ( 0 , 1000 ) ;
_servo_4 . set_angle ( 4500 ) ;
2012-08-21 23:19:52 -03:00
2013-11-04 07:53:27 -04:00
// range check collective min, max and mid
if ( _collective_min > = _collective_max ) {
_collective_min = 1000 ;
_collective_max = 2000 ;
2012-08-21 23:19:52 -03:00
}
2013-11-04 07:53:27 -04:00
_collective_mid = constrain_int16 ( _collective_mid , _collective_min , _collective_max ) ;
// calculate collective mid point as a number from 0 to 1000
_collective_mid_pwm = ( ( float ) ( _collective_mid - _collective_min ) ) / ( ( float ) ( _collective_max - _collective_min ) ) * 1000.0f ;
2012-10-26 20:59:07 -03:00
2013-11-04 07:53:27 -04:00
// determine roll, pitch and collective input scaling
_roll_scaler = ( float ) _roll_max / 4500.0f ;
_pitch_scaler = ( float ) _pitch_max / 4500.0f ;
_collective_scalar = ( ( float ) ( _collective_max - _collective_min ) ) / 1000.0f ;
2012-08-21 23:19:52 -03:00
2013-11-04 07:53:27 -04:00
// calculate factors based on swash type and servo position
calculate_roll_pitch_collective_factors ( ) ;
// servo min/max values
2014-02-10 00:22:38 -04:00
_servo_1 . radio_min = 1000 ;
_servo_1 . radio_max = 2000 ;
_servo_2 . radio_min = 1000 ;
_servo_2 . radio_max = 2000 ;
_servo_3 . radio_min = 1000 ;
_servo_3 . radio_max = 2000 ;
2012-08-21 23:19:52 -03:00
2013-11-04 07:53:27 -04:00
// mark swash as initialised
_heliflags . swash_initialised = true ;
}
2012-08-21 23:19:52 -03:00
2013-11-04 07:53:27 -04:00
// calculate_roll_pitch_collective_factors - calculate factors based on swash type and servo position
void AP_MotorsHeli : : calculate_roll_pitch_collective_factors ( )
{
if ( _swash_type = = AP_MOTORS_HELI_SWASH_CCPM ) { //CCPM Swashplate, perform control mixing
2012-08-21 23:19:52 -03:00
// roll factors
2014-05-11 20:35:26 -03:00
_rollFactor [ CH_1 ] = cosf ( radians ( _servo1_pos + 90 - ( _phase_angle + _delta_phase_angle ) ) ) ;
_rollFactor [ CH_2 ] = cosf ( radians ( _servo2_pos + 90 - ( _phase_angle + _delta_phase_angle ) ) ) ;
_rollFactor [ CH_3 ] = cosf ( radians ( _servo3_pos + 90 - ( _phase_angle + _delta_phase_angle ) ) ) ;
2012-08-21 23:19:52 -03:00
// pitch factors
2014-05-11 20:35:26 -03:00
_pitchFactor [ CH_1 ] = cosf ( radians ( _servo1_pos - ( _phase_angle + _delta_phase_angle ) ) ) ;
_pitchFactor [ CH_2 ] = cosf ( radians ( _servo2_pos - ( _phase_angle + _delta_phase_angle ) ) ) ;
_pitchFactor [ CH_3 ] = cosf ( radians ( _servo3_pos - ( _phase_angle + _delta_phase_angle ) ) ) ;
2012-08-21 23:19:52 -03:00
// collective factors
_collectiveFactor [ CH_1 ] = 1 ;
_collectiveFactor [ CH_2 ] = 1 ;
_collectiveFactor [ CH_3 ] = 1 ;
} else { //H1 Swashplate, keep servo outputs seperated
// roll factors
_rollFactor [ CH_1 ] = 1 ;
_rollFactor [ CH_2 ] = 0 ;
_rollFactor [ CH_3 ] = 0 ;
// pitch factors
_pitchFactor [ CH_1 ] = 0 ;
_pitchFactor [ CH_2 ] = 1 ;
_pitchFactor [ CH_3 ] = 0 ;
// collective factors
_collectiveFactor [ CH_1 ] = 0 ;
_collectiveFactor [ CH_2 ] = 0 ;
_collectiveFactor [ CH_3 ] = 1 ;
}
2012-04-02 05:26:37 -03:00
}
//
// heli_move_swash - moves swash plate to attitude of parameters passed in
// - expected ranges:
// roll : -4500 ~ 4500
// pitch: -4500 ~ 4500
// collective: 0 ~ 1000
// yaw: -4500 ~ 4500
//
2012-12-08 16:12:39 -04:00
void AP_MotorsHeli : : move_swash ( int16_t roll_out , int16_t pitch_out , int16_t coll_in , int16_t yaw_out )
2012-04-02 05:26:37 -03:00
{
2012-08-21 23:19:52 -03:00
int16_t yaw_offset = 0 ;
int16_t coll_out_scaled ;
2013-11-06 08:39:10 -04:00
// initialize limits flag
limit . roll_pitch = false ;
limit . yaw = false ;
limit . throttle_lower = false ;
limit . throttle_upper = false ;
2013-11-04 07:53:27 -04:00
if ( _servo_manual = = 1 ) { // are we in manual servo mode? (i.e. swash set-up mode)?
2012-08-21 23:19:52 -03:00
// check if we need to free up the swash
2013-11-04 07:53:27 -04:00
if ( _heliflags . swash_initialised ) {
2012-08-21 23:19:52 -03:00
reset_swash ( ) ;
}
2014-07-05 10:27:38 -03:00
// To-Do: This equation seems to be wrong. It probably restricts swash movement so that swash setup doesn't work right.
// _collective_scalar should probably not be used or set to 1?
2014-02-10 00:22:38 -04:00
coll_out_scaled = coll_in * _collective_scalar + _rc_throttle . radio_min - 1000 ;
2012-08-21 23:19:52 -03:00
} else { // regular flight mode
// check if we need to reinitialise the swash
2013-11-04 07:53:27 -04:00
if ( ! _heliflags . swash_initialised ) {
2012-08-21 23:19:52 -03:00
init_swash ( ) ;
}
// rescale roll_out and pitch-out into the min and max ranges to provide linear motion
// across the input range instead of stopping when the input hits the constrain value
// these calculations are based on an assumption of the user specified roll_max and pitch_max
// coming into this equation at 4500 or less, and based on the original assumption of the
// total _servo_x.servo_out range being -4500 to 4500.
roll_out = roll_out * _roll_scaler ;
2013-11-06 08:39:10 -04:00
if ( roll_out < - _roll_max ) {
roll_out = - _roll_max ;
limit . roll_pitch = true ;
}
if ( roll_out > _roll_max ) {
roll_out = _roll_max ;
limit . roll_pitch = true ;
}
2012-08-21 23:19:52 -03:00
2013-11-06 08:39:10 -04:00
// scale pitch and update limits
2012-08-21 23:19:52 -03:00
pitch_out = pitch_out * _pitch_scaler ;
2013-11-06 08:39:10 -04:00
if ( pitch_out < - _pitch_max ) {
pitch_out = - _pitch_max ;
limit . roll_pitch = true ;
}
if ( pitch_out > _pitch_max ) {
pitch_out = _pitch_max ;
limit . roll_pitch = true ;
}
// constrain collective input
_collective_out = coll_in ;
if ( _collective_out < = 0 ) {
_collective_out = 0 ;
limit . throttle_lower = true ;
}
if ( _collective_out > = 1000 ) {
_collective_out = 1000 ;
limit . throttle_upper = true ;
}
// ensure not below landed/landing collective
if ( _heliflags . landing_collective & & _collective_out < _land_collective_min ) {
_collective_out = _land_collective_min ;
limit . throttle_lower = true ;
}
2012-08-21 23:19:52 -03:00
// scale collective pitch
2013-11-04 07:53:27 -04:00
coll_out_scaled = _collective_out * _collective_scalar + _collective_min - 1000 ;
2012-08-21 23:19:52 -03:00
// rudder feed forward based on collective
2013-07-23 16:16:14 -03:00
// the feed-forward is not required when the motor is shut down and not creating torque
// also not required if we are using external gyro
2013-12-14 22:12:32 -04:00
if ( ( _rotor_desired > 0 ) & & _tail_type ! = AP_MOTORS_HELI_TAILTYPE_SERVO_EXTGYRO ) {
2013-09-19 12:56:47 -03:00
yaw_offset = _collective_yaw_effect * abs ( _collective_out - _collective_mid_pwm ) ;
2012-08-21 23:19:52 -03:00
}
}
// swashplate servos
2014-02-10 00:22:38 -04:00
_servo_1 . servo_out = ( _rollFactor [ CH_1 ] * roll_out + _pitchFactor [ CH_1 ] * pitch_out ) / 10 + _collectiveFactor [ CH_1 ] * coll_out_scaled + ( _servo_1 . radio_trim - 1500 ) ;
_servo_2 . servo_out = ( _rollFactor [ CH_2 ] * roll_out + _pitchFactor [ CH_2 ] * pitch_out ) / 10 + _collectiveFactor [ CH_2 ] * coll_out_scaled + ( _servo_2 . radio_trim - 1500 ) ;
2013-11-04 07:53:27 -04:00
if ( _swash_type = = AP_MOTORS_HELI_SWASH_H1 ) {
2014-02-10 00:22:38 -04:00
_servo_1 . servo_out + = 500 ;
_servo_2 . servo_out + = 500 ;
2012-08-21 23:19:52 -03:00
}
2014-02-10 00:22:38 -04:00
_servo_3 . servo_out = ( _rollFactor [ CH_3 ] * roll_out + _pitchFactor [ CH_3 ] * pitch_out ) / 10 + _collectiveFactor [ CH_3 ] * coll_out_scaled + ( _servo_3 . radio_trim - 1500 ) ;
_servo_4 . servo_out = yaw_out + yaw_offset ;
2012-08-21 23:19:52 -03:00
2013-11-06 08:39:10 -04:00
// constrain yaw and update limits
2014-02-10 00:22:38 -04:00
if ( _servo_4 . servo_out < - 4500 ) {
_servo_4 . servo_out = - 4500 ;
2013-11-06 08:39:10 -04:00
limit . yaw = true ;
}
2014-02-10 00:22:38 -04:00
if ( _servo_4 . servo_out > 4500 ) {
_servo_4 . servo_out = 4500 ;
2013-11-06 08:39:10 -04:00
limit . yaw = true ;
}
2012-08-21 23:19:52 -03:00
// use servo_out to calculate pwm_out and radio_out
2014-02-10 00:22:38 -04:00
_servo_1 . calc_pwm ( ) ;
_servo_2 . calc_pwm ( ) ;
_servo_3 . calc_pwm ( ) ;
_servo_4 . calc_pwm ( ) ;
2012-08-21 23:19:52 -03:00
// actually move the servos
2014-02-10 02:59:39 -04:00
hal . rcout - > write ( pgm_read_byte ( & _motor_to_channel_map [ AP_MOTORS_MOT_1 ] ) , _servo_1 . radio_out ) ;
hal . rcout - > write ( pgm_read_byte ( & _motor_to_channel_map [ AP_MOTORS_MOT_2 ] ) , _servo_2 . radio_out ) ;
hal . rcout - > write ( pgm_read_byte ( & _motor_to_channel_map [ AP_MOTORS_MOT_3 ] ) , _servo_3 . radio_out ) ;
hal . rcout - > write ( pgm_read_byte ( & _motor_to_channel_map [ AP_MOTORS_MOT_4 ] ) , _servo_4 . radio_out ) ;
2012-08-21 23:19:52 -03:00
2013-11-07 03:07:53 -04:00
// output gain to exernal gyro
if ( _tail_type = = AP_MOTORS_HELI_TAILTYPE_SERVO_EXTGYRO ) {
2013-11-08 04:32:50 -04:00
write_aux ( _ext_gyro_gain ) ;
2013-11-07 03:07:53 -04:00
}
}
// rsc_control - update value to send to tail and main rotor's ESC
// desired_rotor_speed is a desired speed from 0 to 1000
2013-11-08 04:29:54 -04:00
void AP_MotorsHeli : : rsc_control ( )
2013-11-07 03:07:53 -04:00
{
// if disarmed output minimums
if ( ! armed ( ) ) {
// shut down tail rotor
if ( _tail_type = = AP_MOTORS_HELI_TAILTYPE_DIRECTDRIVE_VARPITCH | | _tail_type = = AP_MOTORS_HELI_TAILTYPE_DIRECTDRIVE_FIXEDPITCH ) {
_tail_direct_drive_out = 0 ;
write_aux ( _tail_direct_drive_out ) ;
}
// shut down main rotor
if ( _rsc_mode ! = AP_MOTORS_HELI_RSC_MODE_NONE ) {
_rotor_out = 0 ;
2013-11-09 00:38:33 -04:00
_rotor_speed_estimate = 0 ;
2013-11-07 03:07:53 -04:00
write_rsc ( _rotor_out ) ;
}
return ;
}
// ramp up or down main rotor and tail
2013-11-08 04:29:54 -04:00
if ( _rotor_desired > 0 ) {
2013-11-07 03:07:53 -04:00
// ramp up tail rotor (this does nothing if not using direct drive variable pitch tail)
tail_ramp ( _direct_drive_tailspeed ) ;
// note: this always returns true if not using direct drive variable pitch tail
if ( tail_rotor_runup_complete ( ) ) {
2013-11-08 04:29:54 -04:00
rotor_ramp ( _rotor_desired ) ;
2013-11-07 03:07:53 -04:00
}
} else {
// shutting down main rotor
rotor_ramp ( 0 ) ;
2014-05-10 08:55:16 -03:00
// shut-down tail rotor. Note: this does nothing if not using direct drive vairable pitch tail
tail_ramp ( 0 ) ;
2013-11-07 03:07:53 -04:00
}
// direct drive fixed pitch tail servo gets copy of yaw servo out (ch4) while main rotor is running
if ( _tail_type = = AP_MOTORS_HELI_TAILTYPE_DIRECTDRIVE_FIXEDPITCH ) {
// output fixed-pitch speed control if Ch8 is high
2013-11-09 00:38:33 -04:00
if ( _rotor_desired > 0 | | _rotor_speed_estimate > 0 ) {
2013-11-07 03:07:53 -04:00
// copy yaw output to tail esc
2014-02-10 00:22:38 -04:00
write_aux ( _servo_4 . servo_out ) ;
2013-11-07 03:07:53 -04:00
} else {
write_aux ( 0 ) ;
}
2012-08-21 23:19:52 -03:00
}
2012-05-30 22:50:25 -03:00
}
2013-11-07 03:07:53 -04:00
// rotor_ramp - ramps rotor towards target
// result put in _rotor_out and sent to ESC
void AP_MotorsHeli : : rotor_ramp ( int16_t rotor_target )
2012-05-30 22:50:25 -03:00
{
2013-11-07 03:07:53 -04:00
// return immediately if not ramping required
if ( _rsc_mode = = AP_MOTORS_HELI_RSC_MODE_NONE ) {
_rotor_out = rotor_target ;
return ;
}
// range check rotor_target
rotor_target = constrain_int16 ( rotor_target , 0 , 1000 ) ;
2013-11-09 00:38:33 -04:00
// ramp rotor esc output towards target
2013-11-07 03:07:53 -04:00
if ( _rotor_out < rotor_target ) {
2013-12-05 08:24:20 -04:00
// allow rotor out to jump to rotor's current speed
if ( _rotor_out < _rotor_speed_estimate ) {
_rotor_out = _rotor_speed_estimate ;
}
2013-11-09 00:38:33 -04:00
// ramp up slowly to target
2013-11-07 03:07:53 -04:00
_rotor_out + = _rsc_ramp_increment ;
if ( _rotor_out > rotor_target ) {
_rotor_out = rotor_target ;
}
2013-11-09 00:38:33 -04:00
} else {
// ramping down happens instantly
2013-12-05 08:24:20 -04:00
_rotor_out = rotor_target ;
}
2013-11-09 00:38:33 -04:00
// ramp rotor speed estimate towards rotor out
if ( _rotor_speed_estimate < _rotor_out ) {
_rotor_speed_estimate + = _rsc_runup_increment ;
if ( _rotor_speed_estimate > _rotor_out ) {
_rotor_speed_estimate = _rotor_out ;
2013-12-05 08:24:20 -04:00
}
2013-11-09 00:38:33 -04:00
} else {
_rotor_speed_estimate - = _rsc_runup_increment ;
if ( _rotor_speed_estimate < _rotor_out ) {
_rotor_speed_estimate = _rotor_out ;
}
2013-11-07 03:07:53 -04:00
}
// set runup complete flag
2013-11-09 00:38:33 -04:00
if ( ! _heliflags . motor_runup_complete & & rotor_target > 0 & & _rotor_speed_estimate > = rotor_target ) {
2013-11-07 03:07:53 -04:00
_heliflags . motor_runup_complete = true ;
}
2013-11-09 00:38:33 -04:00
if ( _heliflags . motor_runup_complete & & rotor_target = = 0 & & _rotor_speed_estimate < = 0 ) {
2013-11-07 03:07:53 -04:00
_heliflags . motor_runup_complete = false ;
}
// output to rsc servo
2013-12-05 08:24:20 -04:00
write_rsc ( _rotor_out ) ;
2012-10-26 20:59:07 -03:00
}
2013-11-07 03:07:53 -04:00
// tail_ramp - ramps tail motor towards target. Only used for direct drive variable pitch tails
// results put into _tail_direct_drive_out and sent to ESC
void AP_MotorsHeli : : tail_ramp ( int16_t tail_target )
2013-11-04 07:53:27 -04:00
{
2013-11-07 03:07:53 -04:00
// return immediately if not ramping required
if ( _tail_type ! = AP_MOTORS_HELI_TAILTYPE_DIRECTDRIVE_VARPITCH ) {
_tail_direct_drive_out = tail_target ;
return ;
2013-07-05 15:56:03 -03:00
}
2013-11-07 03:07:53 -04:00
// range check tail_target
tail_target = constrain_int16 ( tail_target , 0 , 1000 ) ;
// ramp towards target
if ( _tail_direct_drive_out < tail_target ) {
_tail_direct_drive_out + = AP_MOTORS_HELI_TAIL_RAMP_INCREMENT ;
if ( _tail_direct_drive_out > = tail_target ) {
_tail_direct_drive_out = tail_target ;
2012-08-21 23:19:52 -03:00
}
2013-11-07 03:07:53 -04:00
} else if ( _tail_direct_drive_out > tail_target ) {
_tail_direct_drive_out - = AP_MOTORS_HELI_TAIL_RAMP_INCREMENT ;
if ( _tail_direct_drive_out < tail_target ) {
_tail_direct_drive_out = tail_target ;
2012-08-21 23:19:52 -03:00
}
2013-11-07 03:07:53 -04:00
}
// output to tail servo
write_aux ( _tail_direct_drive_out ) ;
}
2012-08-21 23:19:52 -03:00
2013-11-07 03:07:53 -04:00
// return true if the tail rotor is up to speed
bool AP_MotorsHeli : : tail_rotor_runup_complete ( )
{
// always return true if not using direct drive variable pitch tails
if ( _tail_type ! = AP_MOTORS_HELI_TAILTYPE_DIRECTDRIVE_VARPITCH ) {
return true ;
2012-08-21 23:19:52 -03:00
}
2013-11-07 03:07:53 -04:00
// check speed
return ( armed ( ) & & _tail_direct_drive_out > = _direct_drive_tailspeed ) ;
}
// write_rsc - outputs pwm onto output rsc channel (ch8)
// servo_out parameter is of the range 0 ~ 1000
void AP_MotorsHeli : : write_rsc ( int16_t servo_out )
{
2014-02-10 00:22:38 -04:00
_servo_rsc . servo_out = servo_out ;
_servo_rsc . calc_pwm ( ) ;
hal . rcout - > write ( AP_MOTORS_HELI_RSC , _servo_rsc . radio_out ) ;
2013-11-07 03:07:53 -04:00
}
// write_aux - outputs pwm onto output aux channel (ch7)
// servo_out parameter is of the range 0 ~ 1000
void AP_MotorsHeli : : write_aux ( int16_t servo_out )
{
2014-02-10 00:22:38 -04:00
_servo_aux . servo_out = servo_out ;
_servo_aux . calc_pwm ( ) ;
hal . rcout - > write ( AP_MOTORS_HELI_AUX , _servo_aux . radio_out ) ;
2013-11-04 07:53:27 -04:00
}
2014-05-11 20:50:03 -03:00
// set_delta_phase_angle for setting variable phase angle compensation and force
// recalculation of collective factors
void AP_MotorsHeli : : set_delta_phase_angle ( int16_t angle )
{
angle = constrain_int16 ( angle , - 90 , 90 ) ;
_delta_phase_angle = angle ;
calculate_roll_pitch_collective_factors ( ) ;
}