ardupilot/libraries/DataFlash/DataFlash_Revo.cpp

1026 lines
25 KiB
C++
Raw Normal View History

2018-02-02 16:35:19 -04:00
/*
hacked up DataFlash library for Desktop support
*/
#include <AP_HAL/AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_F4LIGHT && defined(BOARD_DATAFLASH_CS_PIN) && !defined(BOARD_DATAFLASH_FATFS)
#include "DataFlash_Revo.h"
#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdint.h>
#include <assert.h>
#include <AP_HAL_F4Light/Scheduler.h>
#include <AP_HAL_F4Light/GPIO.h>
#pragma GCC diagnostic ignored "-Wunused-result"
extern const AP_HAL::HAL& hal;
static uint8_t buffer[2][DF_PAGE_SIZE];
static uint8_t cmd[4];
AP_HAL::OwnPtr<AP_HAL::SPIDevice> DataFlash_Revo::_spi = nullptr;
AP_HAL::Semaphore *DataFlash_Revo::_spi_sem = nullptr;
bool DataFlash_Revo::log_write_started=false;
bool DataFlash_Revo::flash_died=false;
// the last page holds the log format in first 4 bytes. Please change
// this if (and only if!) the low level format changes
#define DF_LOGGING_FORMAT 0x28122013L
uint32_t DataFlash_Revo::bufferspace_available()
{
// because DataFlash_Block devices are ring buffers, we *always*
// have room...
return df_NumPages * df_PageSize;
}
// *** DATAFLASH PUBLIC FUNCTIONS ***
void DataFlash_Revo::StartWrite(uint16_t PageAdr)
{
df_BufferIdx = 0;
df_BufferNum = 0;
df_PageAdr = PageAdr;
WaitReady();
}
void DataFlash_Revo::FinishWrite(void)
{
// Write Buffer to flash, NO WAIT
BufferToPage(df_BufferNum, df_PageAdr, 0);
df_PageAdr++;
// If we reach the end of the memory, start from the beginning
if (df_PageAdr > df_NumPages) {
df_PageAdr = 1;
}
// TODO: а что, стирать уже не надо???
uint16_t block_num = df_PageAdr / (erase_size/DF_PAGE_SIZE); // number of erase block
uint16_t page_in_block = df_PageAdr % (erase_size/DF_PAGE_SIZE); // number of page in erase block
// if(block_num != last_block_num){
if(page_in_block==0 || df_PageAdr==1){ // начали писАть страницу - подготовим ее
PageErase(df_PageAdr);
last_block_num = block_num;
}
// switch buffer
df_BufferNum ^= 1;
df_BufferIdx = 0;
}
bool DataFlash_Revo::WritesOK() const
{
if (!CardInserted()) {
return false;
}
if (!log_write_started) {
return false;
}
return true;
}
bool DataFlash_Revo::_WritePrioritisedBlock(const void *pBuffer, uint16_t size,
bool is_critical)
{
// is_critical is ignored - we're a ring buffer and never run out
// of space. possibly if we do more complicated bandwidth
// limiting we can reservice bandwidth based on is_critical
if (!WritesOK()) {
return false;
}
if (! WriteBlockCheckStartupMessages()) {
return false;
}
while (size > 0) {
uint16_t n = df_PageSize - df_BufferIdx;
if (n > size) {
n = size;
}
if (df_BufferIdx == 0) {
// if we are at the start of a page we need to insert a
// page header
if (n > df_PageSize - sizeof(struct PageHeader)) {
n = df_PageSize - sizeof(struct PageHeader);
}
struct PageHeader ph = { df_FileNumber, df_FilePage };
BlockWrite(df_BufferNum, df_BufferIdx, &ph, sizeof(ph), pBuffer, n);
df_BufferIdx += n + sizeof(ph);
} else {
BlockWrite(df_BufferNum, df_BufferIdx, nullptr, 0, pBuffer, n);
df_BufferIdx += n;
}
size -= n;
pBuffer = (const void *)(n + (uintptr_t)pBuffer);
if (df_BufferIdx == df_PageSize) {
FinishWrite();
df_FilePage++;
}
}
return true;
}
// Get the last page written to
uint16_t DataFlash_Revo::GetWritePage()
{
return df_PageAdr;
}
// Get the last page read
uint16_t DataFlash_Revo::GetPage()
{
return df_Read_PageAdr;
}
void DataFlash_Revo::StartRead(uint16_t PageAdr)
{
df_Read_BufferNum = 0;
df_Read_PageAdr = PageAdr;
// disable writing while reading
log_write_started = false;
WaitReady();
// copy flash page to buffer
PageToBuffer(df_Read_BufferNum, df_Read_PageAdr);
// We are starting a new page - read FileNumber and FilePage
struct PageHeader ph;
BlockRead(df_Read_BufferNum, 0, &ph, sizeof(ph));
df_FileNumber = ph.FileNumber;
df_FilePage = ph.FilePage;
df_Read_BufferIdx = sizeof(ph);
}
bool DataFlash_Revo::ReadBlock(void *pBuffer, uint16_t size)
{
while (size > 0) {
uint16_t n = df_PageSize - df_Read_BufferIdx;
if (n > size) {
n = size;
}
WaitReady();
if (!BlockRead(df_Read_BufferNum, df_Read_BufferIdx, pBuffer, n)) {
return false;
}
size -= n;
pBuffer = (void *)(n + (uintptr_t)pBuffer);
df_Read_BufferIdx += n;
if (df_Read_BufferIdx == df_PageSize) {
df_Read_PageAdr++;
if (df_Read_PageAdr > df_NumPages) {
df_Read_PageAdr = 1;
}
PageToBuffer(df_Read_BufferNum, df_Read_PageAdr);
// We are starting a new page - read FileNumber and FilePage
struct PageHeader ph;
if (!BlockRead(df_Read_BufferNum, 0, &ph, sizeof(ph))) {
return false;
}
df_FileNumber = ph.FileNumber;
df_FilePage = ph.FilePage;
df_Read_BufferIdx = sizeof(ph);
}
}
return true;
}
void DataFlash_Revo::SetFileNumber(uint16_t FileNumber)
{
df_FileNumber = FileNumber;
df_FilePage = 1;
}
uint16_t DataFlash_Revo::GetFileNumber()
{
return df_FileNumber;
}
uint16_t DataFlash_Revo::GetFilePage()
{
return df_FilePage;
}
void DataFlash_Revo::EraseAll()
{
log_write_started = false;
ChipErase();
// write the logging format in the last page
hal.scheduler->delay(100);
StartWrite(df_NumPages+1);
uint32_t version = DF_LOGGING_FORMAT;
log_write_started = true;
BlockWrite(df_BufferNum, 0, nullptr, 0, &version, sizeof(version));
log_write_started = false;
FinishWrite();
hal.scheduler->delay(100);
//[ just to test
StartRead(df_NumPages+1); // read last page after erase to check it
StartRead(1);
//]
}
bool DataFlash_Revo::NeedPrep(void)
{
return NeedErase();
}
void DataFlash_Revo::Prep()
{
if (hal.util->get_soft_armed()) {
// do not want to do any filesystem operations while we are e.g. flying
return;
}
if (NeedErase()) {
EraseAll();
}
}
/*
* we need to erase if the logging format has changed
*/
bool DataFlash_Revo::NeedErase(void)
{
uint32_t version = 0;
StartRead(df_NumPages+1); // last page
BlockRead(df_Read_BufferNum, 0, &version, sizeof(version));
StartRead(1);
if(version == DF_LOGGING_FORMAT) return false;
printf("Need to erase: version is %lx required %lx\n", version, DF_LOGGING_FORMAT);
return true;
}
/**
get raw data from a log
*/
int16_t DataFlash_Revo::get_log_data_raw(uint16_t log_num, uint16_t page, uint32_t offset, uint16_t len, uint8_t *data)
{
uint16_t data_page_size = df_PageSize - sizeof(struct PageHeader);
if (offset >= data_page_size) {
page += offset / data_page_size;
offset = offset % data_page_size;
if (page > df_NumPages) {
// pages are one based, not zero
page = 1 + page - df_NumPages;
}
}
if (log_write_started || df_Read_PageAdr != page) {
StartRead(page);
}
df_Read_BufferIdx = offset + sizeof(struct PageHeader);
if (!ReadBlock(data, len)) {
return -1;
}
return (int16_t)len;
}
/**
get data from a log, accounting for adding FMT headers
*/
int16_t DataFlash_Revo::get_log_data(uint16_t log_num, uint16_t page, uint32_t offset, uint16_t len, uint8_t *data)
{
if (offset == 0) {
uint8_t header[3];
get_log_data_raw(log_num, page, 0, 3, header);
adding_fmt_headers = (header[0] != HEAD_BYTE1 || header[1] != HEAD_BYTE2 || header[2] != LOG_FORMAT_MSG);
}
uint16_t ret = 0;
if (adding_fmt_headers) {
// the log doesn't start with a FMT message, we need to add
// them
const uint16_t fmt_header_size = num_types() * sizeof(struct log_Format);
while (offset < fmt_header_size && len > 0) {
struct log_Format pkt;
uint8_t t = offset / sizeof(pkt);
uint8_t ofs = offset % sizeof(pkt);
Log_Fill_Format(structure(t), pkt);
uint8_t n = sizeof(pkt) - ofs;
if (n > len) {
n = len;
}
memcpy(data, ofs + (uint8_t *)&pkt, n);
data += n;
offset += n;
len -= n;
ret += n;
}
offset -= fmt_header_size;
}
if (len > 0) {
ret += get_log_data_raw(log_num, page, offset, len, data);
}
return ret;
}
// Public Methods //////////////////////////////////////////////////////////////
void DataFlash_Revo::Init()
{
df_NumPages=0;
#if BOARD_DATAFLASH_ERASE_SIZE >= 65536
erase_cmd=JEDEC_PAGE_ERASE;
#else
erase_cmd=JEDEC_SECTOR_ERASE;
#endif
erase_size = BOARD_DATAFLASH_ERASE_SIZE;
GPIO::_pinMode(DF_RESET,OUTPUT);
GPIO::_setSpeed(DF_RESET, GPIO_speed_100MHz);
// Reset the chip
GPIO::_write(DF_RESET,0);
Scheduler::_delay(1);
GPIO::_write(DF_RESET,1);
_spi = hal.spi->get_device(HAL_DATAFLASH_NAME);
if (!_spi) {
AP_HAL::panic("PANIC: DataFlash SPIDeviceDriver not found");
return; /* never reached */
}
_spi_sem = _spi->get_semaphore();
if (!_spi_sem) {
AP_HAL::panic("PANIC: DataFlash SPIDeviceDriver semaphore is null");
return; /* never reached */
}
_spi_sem->take(10);
_spi->set_speed(AP_HAL::Device::SPEED_LOW);
DataFlash_Backend::Init();
_spi_sem->give();
df_NumPages = BOARD_DATAFLASH_PAGES - 1; // reserve last page for config information
ReadManufacturerID();
getSectorCount(&df_NumPages);
flash_died=false;
log_write_started = true;
df_PageSize = DF_PAGE_SIZE;
}
void DataFlash_Revo::WaitReady() {
if(flash_died) return;
uint32_t t = AP_HAL::millis();
while(ReadStatus()!=0){
Scheduler::yield(0); // пока ждем пусть другие работают
if(AP_HAL::millis() - t > 4000) {
flash_died = true;
return;
}
}
}
// try to take a semaphore safely from both in a timer and outside
bool DataFlash_Revo::_sem_take(uint8_t timeout)
{
if(!_spi_sem || flash_died) return false;
return _spi_sem->take(timeout);
}
bool DataFlash_Revo::cs_assert(){
if (!_sem_take(HAL_SEMAPHORE_BLOCK_FOREVER))
return false;
_spi->set_speed(AP_HAL::Device::SPEED_HIGH);
GPIO::_write(DF_RESET,0);
return true;
}
void DataFlash_Revo::cs_release(){
GPIO::_write(DF_RESET,1);
_spi_sem->give();
}
// This function is mainly to test the device
void DataFlash_Revo::ReadManufacturerID()
{
if (!cs_assert()) return;
// Read manufacturer and ID command...
#if 0
spi_write(JEDEC_DEVICE_ID); //
df_manufacturer = spi_read();
df_device = spi_read(); //memorytype
df_device = (df_device << 8) | spi_read(); //capacity
spi_read(); // ignore 4th byte
#else
cmd[0] = JEDEC_DEVICE_ID;
_spi->transfer(cmd, 1, buffer[1], 4);
df_manufacturer = buffer[1][0];
df_device = (buffer[1][1] << 8) | buffer[1][2]; //capacity
#endif
cs_release();
}
bool DataFlash_Revo::getSectorCount(uint32_t *ptr){
uint8_t capacity = df_device & 0xFF;
uint8_t memtype = (df_device>>8) & 0xFF;
uint32_t size=0;
const char * mfg=NULL;
switch(df_manufacturer){
case 0xEF: // Winbond Serial Flash
if (memtype == 0x40) {
mfg="Winbond";
size = (1 << ((capacity & 0x0f) + 8));
/*
const uint8_t _capID[11] = {0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x43};
const uint32_t _memSize[11] = {64L*K, 128L*K, 256L*K, 512L*K, 1L*M, 2L*M, 4L*M, 8L*M, 16L*M, 32L*M, 8L*M};
*/
erase_size=4096;
erase_cmd=JEDEC_SECTOR_ERASE;
}
break;
case 0xbf: // SST
if (memtype == 0x25) {
mfg="Microchip";
size = (1 << ((capacity & 0x07) + 12));
}
break;
case 0x20: // micron
if (memtype == 0xba){// JEDEC_ID_MICRON_N25Q128 0x20ba18
mfg="Micron";
size = (1 << ((capacity & 0x0f) + 8));
erase_size=4096;
erase_cmd=JEDEC_SECTOR_ERASE;
} else if(memtype==0x20) { // JEDEC_ID_MICRON_M25P16 0x202015
mfg="Micron";
size = (1 << ((capacity & 0x0f) + 8));
}
break;
case 0xC2: //JEDEC_ID_MACRONIX_MX25L6406E 0xC22017
if (memtype == 0x20) {
mfg="MACRONIX";
size = (1 << ((capacity & 0x0f) + 8));
erase_size=4096;
erase_cmd=JEDEC_SECTOR_ERASE;
}
break;
case 0x9D: // ISSI
if (memtype == 0x40 || memtype == 0x30) {
mfg = "ISSI";
size = (1 << ((capacity & 0x0f) + 8));
}
break;
default:
break;
}
if(mfg && size) {
printf("%s SPI Flash found sectors=%ld\n", mfg, size);
}else {
printf("\nUnknown Flash! SPI Flash codes: mfg=%x type=%x cap=%x\n ",df_manufacturer, memtype, capacity);
size = BOARD_DATAFLASH_PAGES; // as defined
}
///////
size -= (erase_size/DF_PAGE_SIZE); // reserve last page for config information
*ptr = size; // in 256b blocks
return true;
}
// Read the status register
uint8_t DataFlash_Revo::ReadStatusReg()
{
uint8_t tmp;
// activate dataflash command decoder
if (!cs_assert()) return JEDEC_STATUS_BUSY;
// Read status command
#if 0
spi_write(JEDEC_READ_STATUS);
tmp = spi_read(); // We only want to extract the READY/BUSY bit
#else
cmd[0] = JEDEC_READ_STATUS;
_spi->transfer(cmd, 1, &cmd[1], 1);
tmp = cmd[1];
#endif
// release SPI bus for use by other sensors
cs_release();
return tmp;
}
uint8_t DataFlash_Revo::ReadStatus()
{
// We only want to extract the READY/BUSY bit
int32_t status = ReadStatusReg();
if (status < 0)
return -1;
return status & JEDEC_STATUS_BUSY;
}
void DataFlash_Revo::PageToBuffer(unsigned char BufferNum, uint16_t pageNum)
{
uint32_t PageAdr = pageNum * DF_PAGE_SIZE;
if (!cs_assert()) return;
cmd[0] = JEDEC_READ_DATA;
cmd[1] = (PageAdr >> 16) & 0xff;
cmd[2] = (PageAdr >> 8) & 0xff;
cmd[3] = (PageAdr >> 0) & 0xff;
_spi->transfer(cmd, 4, buffer[BufferNum], DF_PAGE_SIZE);
cs_release();
}
void DataFlash_Revo::BufferToPage (unsigned char BufferNum, uint16_t pageNum, unsigned char wait)
{
uint32_t PageAdr = pageNum * DF_PAGE_SIZE;
Flash_Jedec_WriteEnable();
if (!cs_assert()) return;
cmd[0] = JEDEC_PAGE_WRITE;
cmd[1] = (PageAdr >> 16) & 0xff;
cmd[2] = (PageAdr >> 8) & 0xff;
cmd[3] = (PageAdr >> 0) & 0xff;
_spi->transfer(cmd, 4,NULL, 0);
_spi->transfer(buffer[BufferNum], DF_PAGE_SIZE, NULL, 0);
cs_release();
if(wait) WaitReady();
}
void DataFlash_Revo::BufferWrite (unsigned char BufferNum, uint16_t IntPageAdr, unsigned char Data)
{
buffer[BufferNum][IntPageAdr] = (uint8_t)Data;
}
void DataFlash_Revo::BlockWrite(uint8_t BufferNum, uint16_t IntPageAdr,
const void *pHeader, uint8_t hdr_size,
const void *pBuffer, uint16_t size)
{
if (hdr_size) {
memcpy(&buffer[BufferNum][IntPageAdr],
pHeader,
hdr_size);
}
memcpy(&buffer[BufferNum][IntPageAdr+hdr_size],
pBuffer,
size);
}
// read size bytes of data to a page. The caller must ensure that
// the data fits within the page, otherwise it will wrap to the
// start of the page
bool DataFlash_Revo::BlockRead(uint8_t BufferNum, uint16_t IntPageAdr, void *pBuffer, uint16_t size)
{
memcpy(pBuffer, &buffer[BufferNum][IntPageAdr], size);
return true;
}
/*
* 2 097 152 bytes (8 bits each)
* 32 sectors (512 Kbits, 65536 bytes each)
* 8192 pages (256 bytes each).
*/
void DataFlash_Revo::PageErase (uint16_t pageNum)
{
uint32_t PageAdr = pageNum * DF_PAGE_SIZE;
cmd[0] = erase_cmd;
cmd[1] = (PageAdr >> 16) & 0xff;
cmd[2] = (PageAdr >> 8) & 0xff;
cmd[3] = (PageAdr >> 0) & 0xff;
Flash_Jedec_WriteEnable();
if (!cs_assert()) return;
_spi->transfer(cmd, 4, NULL, 0);
cs_release();
}
void DataFlash_Revo::ChipErase()
{
cmd[0] = JEDEC_BULK_ERASE;
Flash_Jedec_WriteEnable();
if (!cs_assert()) return;
_spi->transfer(cmd, 1, NULL, 0);
cs_release();
}
void DataFlash_Revo::Flash_Jedec_WriteEnable(void)
{
// activate dataflash command decoder
if (!cs_assert()) return;
spi_write(JEDEC_WRITE_ENABLE);
cs_release();
}
//////////////////////////////////////////
// This function determines the number of whole or partial log files in the DataFlash
// Wholly overwritten files are (of course) lost.
uint16_t DataFlash_Revo::get_num_logs(void)
{
uint16_t lastpage;
uint16_t last;
uint16_t first;
if (find_last_page() == 1) {
return 0;
}
StartRead(1);
if (GetFileNumber() == 0xFFFF) {
return 0;
}
lastpage = find_last_page();
StartRead(lastpage);
last = GetFileNumber();
StartRead(lastpage + 2);
if (GetFileNumber() == 0xFFFF)
StartRead(((lastpage >> 8) + 1) << 8); // next sector
first = GetFileNumber();
if(first > last) {
StartRead(1);
first = GetFileNumber();
}
if (last == first) {
return 1;
}
return (last - first + 1);
}
// This function starts a new log file in the DataFlash
uint16_t DataFlash_Revo::start_new_log(void)
{
uint16_t last_page = find_last_page();
StartRead(last_page);
//Serial.print("last page: "); Serial.println(last_page);
//Serial.print("file #: "); Serial.println(GetFileNumber());
//Serial.print("file page: "); Serial.println(GetFilePage());
if(find_last_log() == 0 || GetFileNumber() == 0xFFFF) {
SetFileNumber(1);
StartWrite(1);
//Serial.println("start log from 0");
log_write_started = true;
return 1;
}
uint16_t new_log_num;
// Check for log of length 1 page and suppress
if(GetFilePage() <= 1) {
new_log_num = GetFileNumber();
// Last log too short, reuse its number
// and overwrite it
SetFileNumber(new_log_num);
StartWrite(last_page);
} else {
new_log_num = GetFileNumber()+1;
if (last_page == 0xFFFF) {
last_page=0;
}
SetFileNumber(new_log_num);
StartWrite(last_page + 1);
}
log_write_started = true;
return new_log_num;
}
// This function finds the first and last pages of a log file
// The first page may be greater than the last page if the DataFlash has been filled and partially overwritten.
void DataFlash_Revo::get_log_boundaries(uint16_t log_num, uint16_t & start_page, uint16_t & end_page)
{
uint16_t num = get_num_logs();
uint16_t look;
if (df_BufferIdx != 0) {
FinishWrite();
hal.scheduler->delay(100);
}
if(num == 1)
{
StartRead(df_NumPages);
if (GetFileNumber() == 0xFFFF)
{
start_page = 1;
end_page = find_last_page_of_log((uint16_t)log_num);
} else {
end_page = find_last_page_of_log((uint16_t)log_num);
start_page = end_page + 1;
}
} else {
if(log_num==1) {
StartRead(df_NumPages);
if(GetFileNumber() == 0xFFFF) {
start_page = 1;
} else {
start_page = find_last_page() + 1;
}
} else {
if(log_num == find_last_log() - num + 1) {
start_page = find_last_page() + 1;
} else {
look = log_num-1;
do {
start_page = find_last_page_of_log(look) + 1;
look--;
} while (start_page <= 0 && look >=1);
}
}
}
if (start_page == df_NumPages+1 || start_page == 0) {
start_page = 1;
}
end_page = find_last_page_of_log(log_num);
if (end_page == 0) {
end_page = start_page;
}
}
bool DataFlash_Revo::check_wrapped(void)
{
StartRead(df_NumPages);
if(GetFileNumber() == 0xFFFF)
return 0;
else
return 1;
}
// This funciton finds the last log number
uint16_t DataFlash_Revo::find_last_log(void)
{
uint16_t last_page = find_last_page();
StartRead(last_page);
return GetFileNumber();
}
// This function finds the last page of the last file
uint16_t DataFlash_Revo::find_last_page(void)
{
uint16_t look;
uint16_t bottom = 1;
uint16_t top = df_NumPages;
uint32_t look_hash;
uint32_t bottom_hash;
uint32_t top_hash;
StartRead(bottom);
bottom_hash = ((int32_t)GetFileNumber()<<16) | GetFilePage();
while(top-bottom > 1) {
look = (top+bottom)/2;
StartRead(look);
look_hash = (int32_t)GetFileNumber()<<16 | GetFilePage();
if (look_hash >= 0xFFFF0000) look_hash = 0;
if(look_hash < bottom_hash) {
// move down
top = look;
} else {
// move up
bottom = look;
bottom_hash = look_hash;
}
}
StartRead(top);
top_hash = ((int32_t)GetFileNumber()<<16) | GetFilePage();
if (top_hash >= 0xFFFF0000) {
top_hash = 0;
}
if (top_hash > bottom_hash) {
return top;
}
return bottom;
}
// This function finds the last page of a particular log file
uint16_t DataFlash_Revo::find_last_page_of_log(uint16_t log_number)
{
uint16_t look;
uint16_t bottom;
uint16_t top;
uint32_t look_hash;
uint32_t check_hash;
if(check_wrapped()) {
StartRead(1);
bottom = GetFileNumber();
if (bottom > log_number)
{
bottom = find_last_page();
top = df_NumPages;
} else {
bottom = 1;
top = find_last_page();
}
} else {
bottom = 1;
top = find_last_page();
}
check_hash = (int32_t)log_number<<16 | 0xFFFF;
while(top-bottom > 1)
{
look = (top+bottom)/2;
StartRead(look);
look_hash = (int32_t)GetFileNumber()<<16 | GetFilePage();
if (look_hash >= 0xFFFF0000) look_hash = 0;
if(look_hash > check_hash) {
// move down
top = look;
} else {
// move up
bottom = look;
}
}
StartRead(top);
if (GetFileNumber() == log_number) return top;
StartRead(bottom);
if (GetFileNumber() == log_number) return bottom;
return -1;
}
/*
dump header information from all log pages
*/
void DataFlash_Revo::DumpPageInfo(AP_HAL::BetterStream *port)
{
for (uint16_t count=1; count<=df_NumPages; count++) {
StartRead(count);
port->printf("DF page, log file #, log page: %u,\t", (unsigned)count);
port->printf("%u,\t", (unsigned)GetFileNumber());
port->printf("%u\n", (unsigned)GetFilePage());
}
}
/*
show information about the device
*/
void DataFlash_Revo::ShowDeviceInfo(AP_HAL::BetterStream *port)
{
if (!CardInserted()) {
port->printf("No dataflash inserted\n");
return;
}
ReadManufacturerID();
port->printf("Manufacturer: 0x%02x Device: 0x%04x\n",
(unsigned)df_manufacturer,
(unsigned)df_device);
port->printf("NumPages: %u PageSize: %u\n",
(unsigned)df_NumPages+1,
(unsigned)df_PageSize);
}
/*
list available log numbers
*/
void DataFlash_Revo::ListAvailableLogs(AP_HAL::BetterStream *port)
{
uint16_t num_logs = get_num_logs();
int16_t last_log_num = find_last_log();
uint16_t log_start = 0;
uint16_t log_end = 0;
if (num_logs == 0) {
port->printf("\nNo logs\n\n");
return;
}
port->printf("\n%u logs\n", (unsigned)num_logs);
for (uint16_t i=num_logs; i>=1; i--) {
uint16_t last_log_start = log_start, last_log_end = log_end;
uint16_t temp = last_log_num - i + 1;
get_log_boundaries(temp, log_start, log_end);
port->printf("Log %u, start %u, end %u\n",
(unsigned)temp,
(unsigned)log_start,
(unsigned)log_end);
if (last_log_start == log_start && last_log_end == log_end) {
// we are printing bogus logs
break;
}
}
port->println();
}
#endif