mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-12 10:58:30 -04:00
209 lines
6.4 KiB
Plaintext
209 lines
6.4 KiB
Plaintext
|
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
||
|
|
||
|
//****************************************************************
|
||
|
// Function that will calculate the desired direction to fly and distance
|
||
|
//****************************************************************
|
||
|
static void navigate()
|
||
|
{
|
||
|
// do not navigate with corrupt data
|
||
|
// ---------------------------------
|
||
|
if (g_gps->fix == 0)
|
||
|
{
|
||
|
g_gps->new_data = false;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if(next_WP.lat == 0){
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// waypoint distance from plane
|
||
|
// ----------------------------
|
||
|
wp_distance = get_distance(¤t_loc, &next_WP);
|
||
|
|
||
|
if (wp_distance < 0){
|
||
|
gcs.send_text_P(SEVERITY_HIGH,PSTR("<navigate> WP error - distance < 0"));
|
||
|
//Serial.println(wp_distance,DEC);
|
||
|
//print_current_waypoints();
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// target_bearing is where we should be heading
|
||
|
// --------------------------------------------
|
||
|
target_bearing = get_bearing(¤t_loc, &next_WP);
|
||
|
|
||
|
// nav_bearing will includes xtrac correction
|
||
|
// ------------------------------------------
|
||
|
nav_bearing = target_bearing;
|
||
|
|
||
|
// check if we have missed the WP
|
||
|
loiter_delta = (target_bearing - old_target_bearing)/100;
|
||
|
|
||
|
// reset the old value
|
||
|
old_target_bearing = target_bearing;
|
||
|
|
||
|
// wrap values
|
||
|
if (loiter_delta > 180) loiter_delta -= 360;
|
||
|
if (loiter_delta < -180) loiter_delta += 360;
|
||
|
loiter_sum += abs(loiter_delta);
|
||
|
|
||
|
// control mode specific updates to nav_bearing
|
||
|
// --------------------------------------------
|
||
|
update_navigation();
|
||
|
}
|
||
|
|
||
|
|
||
|
#if 0
|
||
|
// Disabled for now
|
||
|
void calc_distance_error()
|
||
|
{
|
||
|
distance_estimate += (float)g_gps->ground_speed * .0002 * cos(radians(bearing_error * .01));
|
||
|
distance_estimate -= DST_EST_GAIN * (float)(distance_estimate - GPS_wp_distance);
|
||
|
wp_distance = max(distance_estimate,10);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static void calc_airspeed_errors()
|
||
|
{
|
||
|
// XXX excess casting here
|
||
|
if(control_mode>=AUTO && airspeed_nudge > 0) {
|
||
|
airspeed_error = g.airspeed_cruise + airspeed_nudge - airspeed;
|
||
|
airspeed_energy_error = (long)(((long)(g.airspeed_cruise + airspeed_nudge) * (long)(g.airspeed_cruise + airspeed_nudge)) - ((long)airspeed * (long)airspeed))/20000; //Changed 0.00005f * to / 20000 to avoid floating point calculation
|
||
|
} else {
|
||
|
airspeed_error = g.airspeed_cruise - airspeed;
|
||
|
airspeed_energy_error = (long)(((long)g.airspeed_cruise * (long)g.airspeed_cruise) - ((long)airspeed * (long)airspeed))/20000; //Changed 0.00005f * to / 20000 to avoid floating point calculation
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void calc_bearing_error()
|
||
|
{
|
||
|
if(takeoff_complete == true || g.compass_enabled == true) {
|
||
|
bearing_error = nav_bearing - dcm.yaw_sensor;
|
||
|
} else {
|
||
|
|
||
|
// TODO: we need to use the Yaw gyro for in between GPS reads,
|
||
|
// maybe as an offset from a saved gryo value.
|
||
|
bearing_error = nav_bearing - g_gps->ground_course;
|
||
|
}
|
||
|
|
||
|
bearing_error = wrap_180(bearing_error);
|
||
|
}
|
||
|
|
||
|
static void calc_altitude_error()
|
||
|
{
|
||
|
if(control_mode == AUTO && offset_altitude != 0) {
|
||
|
// limit climb rates
|
||
|
target_altitude = next_WP.alt - ((float)((wp_distance -30) * offset_altitude) / (float)(wp_totalDistance - 30));
|
||
|
|
||
|
// stay within a certain range
|
||
|
if(prev_WP.alt > next_WP.alt){
|
||
|
target_altitude = constrain(target_altitude, next_WP.alt, prev_WP.alt);
|
||
|
}else{
|
||
|
target_altitude = constrain(target_altitude, prev_WP.alt, next_WP.alt);
|
||
|
}
|
||
|
} else if (command_may_ID != MAV_CMD_CONDITION_CHANGE_ALT) {
|
||
|
target_altitude = next_WP.alt;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
// Disabled for now
|
||
|
#if AIRSPEED_SENSOR == 1
|
||
|
long altitude_estimate; // for smoothing GPS output
|
||
|
|
||
|
// special thanks to Ryan Beall for this one
|
||
|
float pitch_angle = pitch_sensor - g.pitch_trim; // pitch_angle = pitch sensor - angle of attack of your plane at level *100 (50 = .5°)
|
||
|
pitch_angle = constrain(pitch_angle, -2000, 2000);
|
||
|
float scale = sin(radians(pitch_angle * .01));
|
||
|
altitude_estimate += (float)airspeed * .0002 * scale;
|
||
|
altitude_estimate -= ALT_EST_GAIN * (float)(altitude_estimate - current_loc.alt);
|
||
|
|
||
|
// compute altitude error for throttle control
|
||
|
altitude_error = target_altitude - altitude_estimate;
|
||
|
#else
|
||
|
altitude_error = target_altitude - current_loc.alt;
|
||
|
#endif
|
||
|
*/
|
||
|
|
||
|
altitude_error = target_altitude - current_loc.alt;
|
||
|
}
|
||
|
|
||
|
static long wrap_360(long error)
|
||
|
{
|
||
|
if (error > 36000) error -= 36000;
|
||
|
if (error < 0) error += 36000;
|
||
|
return error;
|
||
|
}
|
||
|
|
||
|
static long wrap_180(long error)
|
||
|
{
|
||
|
if (error > 18000) error -= 36000;
|
||
|
if (error < -18000) error += 36000;
|
||
|
return error;
|
||
|
}
|
||
|
|
||
|
static void update_loiter()
|
||
|
{
|
||
|
float power;
|
||
|
|
||
|
if(wp_distance <= g.loiter_radius){
|
||
|
power = float(wp_distance) / float(g.loiter_radius);
|
||
|
power = constrain(power, 0.5, 1);
|
||
|
nav_bearing += (int)(9000.0 * (2.0 + power));
|
||
|
}else if(wp_distance < (g.loiter_radius + LOITER_RANGE)){
|
||
|
power = -((float)(wp_distance - g.loiter_radius - LOITER_RANGE) / LOITER_RANGE);
|
||
|
power = constrain(power, 0.5, 1); //power = constrain(power, 0, 1);
|
||
|
nav_bearing -= power * 9000;
|
||
|
|
||
|
}else{
|
||
|
update_crosstrack();
|
||
|
loiter_time = millis(); // keep start time for loiter updating till we get within LOITER_RANGE of orbit
|
||
|
|
||
|
}
|
||
|
/*
|
||
|
if (wp_distance < g.loiter_radius){
|
||
|
nav_bearing += 9000;
|
||
|
}else{
|
||
|
nav_bearing -= 100 * M_PI / 180 * asin(g.loiter_radius / wp_distance);
|
||
|
}
|
||
|
|
||
|
update_crosstrack();
|
||
|
*/
|
||
|
nav_bearing = wrap_360(nav_bearing);
|
||
|
}
|
||
|
|
||
|
static void update_crosstrack(void)
|
||
|
{
|
||
|
// Crosstrack Error
|
||
|
// ----------------
|
||
|
if (abs(wrap_180(target_bearing - crosstrack_bearing)) < 4500) { // If we are too far off or too close we don't do track following
|
||
|
crosstrack_error = sin(radians((target_bearing - crosstrack_bearing) / (float)100)) * (float)wp_distance; // Meters we are off track line
|
||
|
nav_bearing += constrain(crosstrack_error * g.crosstrack_gain, -g.crosstrack_entry_angle.get(), g.crosstrack_entry_angle.get());
|
||
|
nav_bearing = wrap_360(nav_bearing);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void reset_crosstrack()
|
||
|
{
|
||
|
crosstrack_bearing = get_bearing(¤t_loc, &next_WP); // Used for track following
|
||
|
}
|
||
|
|
||
|
static long get_distance(struct Location *loc1, struct Location *loc2)
|
||
|
{
|
||
|
if(loc1->lat == 0 || loc1->lng == 0)
|
||
|
return -1;
|
||
|
if(loc2->lat == 0 || loc2->lng == 0)
|
||
|
return -1;
|
||
|
float dlat = (float)(loc2->lat - loc1->lat);
|
||
|
float dlong = ((float)(loc2->lng - loc1->lng)) * scaleLongDown;
|
||
|
return sqrt(sq(dlat) + sq(dlong)) * .01113195;
|
||
|
}
|
||
|
|
||
|
static long get_bearing(struct Location *loc1, struct Location *loc2)
|
||
|
{
|
||
|
long off_x = loc2->lng - loc1->lng;
|
||
|
long off_y = (loc2->lat - loc1->lat) * scaleLongUp;
|
||
|
long bearing = 9000 + atan2(-off_y, off_x) * 5729.57795;
|
||
|
if (bearing < 0) bearing += 36000;
|
||
|
return bearing;
|
||
|
}
|