ardupilot/ArduCopterMega/Log.pde

750 lines
18 KiB
Plaintext
Raw Normal View History

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
// Code to Write and Read packets from DataFlash log memory
// Code to interact with the user to dump or erase logs
#define HEAD_BYTE1 0xA3 // Decimal 163
#define HEAD_BYTE2 0x95 // Decimal 149
#define END_BYTE 0xBA // Decimal 186
// These are function definitions so the Menu can be constructed before the functions
// are defined below. Order matters to the compiler.
static int8_t print_log_menu(uint8_t argc, const Menu::arg *argv);
static int8_t dump_log(uint8_t argc, const Menu::arg *argv);
static int8_t erase_logs(uint8_t argc, const Menu::arg *argv);
static int8_t select_logs(uint8_t argc, const Menu::arg *argv);
// This is the help function
// PSTR is an AVR macro to read strings from flash memory
// printf_P is a version of print_f that reads from flash memory
static int8_t help_log(uint8_t argc, const Menu::arg *argv)
{
Serial.printf_P(PSTR("\n"
"Commands:\n"
" dump <n>"
" erase (all logs)\n"
" enable <name> | all\n"
" disable <name> | all\n"
"\n"));
}
// Creates a constant array of structs representing menu options
// and stores them in Flash memory, not RAM.
// User enters the string in the console to call the functions on the right.
// See class Menu in AP_Coommon for implementation details
const struct Menu::command log_menu_commands[] PROGMEM = {
{"dump", dump_log},
{"erase", erase_logs},
{"enable", select_logs},
{"disable", select_logs},
{"help", help_log}
};
// A Macro to create the Menu
MENU2(log_menu, "Log", log_menu_commands, print_log_menu);
static bool
print_log_menu(void)
{
int log_start;
int log_end;
byte last_log_num = get_num_logs();
Serial.printf_P(PSTR("logs enabled: "));
if (0 == g.log_bitmask) {
Serial.printf_P(PSTR("none"));
}else{
// Macro to make the following code a bit easier on the eye.
// Pass it the capitalised name of the log option, as defined
// in defines.h but without the LOG_ prefix. It will check for
// the bit being set and print the name of the log option to suit.
#define PLOG(_s) if (g.log_bitmask & MASK_LOG_ ## _s) Serial.printf_P(PSTR(" %S"), PSTR(#_s))
PLOG(ATTITUDE_FAST);
PLOG(ATTITUDE_MED);
PLOG(GPS);
PLOG(PM);
PLOG(CTUN);
PLOG(NTUN);
PLOG(MODE);
PLOG(RAW);
PLOG(CMD);
PLOG(CURRENT);
#undef PLOG
}
Serial.println();
if (last_log_num == 0) {
Serial.printf_P(PSTR("\nNo logs\n"));
}else{
Serial.printf_P(PSTR("\n%d logs\n"), last_log_num);
for(int i = 1; i < last_log_num + 1; i++) {
get_log_boundaries(last_log_num, i, log_start, log_end);
Serial.printf_P(PSTR("Log # %d, start %d, end %d\n"),
i, log_start, log_end);
}
Serial.println();
}
return(true);
}
static int8_t
dump_log(uint8_t argc, const Menu::arg *argv)
{
byte dump_log;
int dump_log_start;
int dump_log_end;
byte last_log_num;
// check that the requested log number can be read
dump_log = argv[1].i;
last_log_num = get_num_logs();
if ((argc != 2) || (dump_log < 1) || (dump_log > last_log_num)) {
Serial.printf_P(PSTR("bad log number\n"));
return(-1);
}
get_log_boundaries(last_log_num, dump_log, dump_log_start, dump_log_end);
Serial.printf_P(PSTR("Dumping Log number %d, start %d, end %d\n"),
dump_log,
dump_log_start,
dump_log_end);
Log_Read(dump_log_start, dump_log_end);
Serial.printf_P(PSTR("Done\n"));
}
static int8_t
erase_logs(uint8_t argc, const Menu::arg *argv)
{
for(int i = 10 ; i > 0; i--) {
Serial.printf_P(PSTR("ATTENTION - Erasing log in %d seconds.\n"), i);
delay(1000);
}
Serial.printf_P(PSTR("\nErasing log...\n"));
for(int j = 1; j < 4096; j++)
DataFlash.PageErase(j);
DataFlash.StartWrite(1);
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_INDEX_MSG);
DataFlash.WriteByte(0);
DataFlash.WriteByte(END_BYTE);
DataFlash.FinishWrite();
Serial.printf_P(PSTR("\nLog erased.\n"));
}
static int8_t
select_logs(uint8_t argc, const Menu::arg *argv)
{
uint16_t bits;
if (argc != 2) {
Serial.printf_P(PSTR("missing log type\n"));
return(-1);
}
bits = 0;
// Macro to make the following code a bit easier on the eye.
// Pass it the capitalised name of the log option, as defined
// in defines.h but without the LOG_ prefix. It will check for
// that name as the argument to the command, and set the bit in
// bits accordingly.
//
if (!strcasecmp_P(argv[1].str, PSTR("all"))) {
bits = ~(bits = 0);
} else {
#define TARG(_s) if (!strcasecmp_P(argv[1].str, PSTR(#_s))) bits |= MASK_LOG_ ## _s
TARG(ATTITUDE_FAST);
TARG(ATTITUDE_MED);
TARG(GPS);
TARG(PM);
TARG(CTUN);
TARG(NTUN);
TARG(MODE);
TARG(RAW);
TARG(CMD);
TARG(CURRENT);
#undef TARG
}
if (!strcasecmp_P(argv[0].str, PSTR("enable"))) {
g.log_bitmask.set_and_save(g.log_bitmask | bits);
}else{
g.log_bitmask.set_and_save(g.log_bitmask & ~bits);
}
return(0);
}
int8_t
process_logs(uint8_t argc, const Menu::arg *argv)
{
log_menu.run();
}
byte get_num_logs(void)
{
int page = 1;
byte data;
byte log_step = 0;
DataFlash.StartRead(1);
while (page == 1) {
data = DataFlash.ReadByte();
switch(log_step) //This is a state machine to read the packets
{
case 0:
if(data==HEAD_BYTE1) // Head byte 1
log_step++;
break;
case 1:
if(data==HEAD_BYTE2) // Head byte 2
log_step++;
else
log_step = 0;
break;
case 2:
if(data==LOG_INDEX_MSG){
byte num_logs = DataFlash.ReadByte();
return num_logs;
}else{
log_step=0; // Restart, we have a problem...
}
break;
}
page = DataFlash.GetPage();
}
return 0;
}
void start_new_log(byte num_existing_logs)
{
int page;
int start_pages[50] = {0,0,0};
int end_pages[50] = {0,0,0};
byte data;
if (num_existing_logs > 0) {
for(int i=0;i<num_existing_logs;i++) {
get_log_boundaries(num_existing_logs, i+1,start_pages[i],end_pages[i]);
}
end_pages[num_existing_logs - 1] = find_last_log_page(start_pages[num_existing_logs - 1]);
}
if (end_pages[num_existing_logs - 1] < 4095 && num_existing_logs < MAX_NUM_LOGS) {
if(num_existing_logs > 0)
start_pages[num_existing_logs] = end_pages[num_existing_logs - 1] + 1;
else
start_pages[0] = 2;
num_existing_logs++;
DataFlash.StartWrite(1);
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_INDEX_MSG);
DataFlash.WriteByte(num_existing_logs);
for(int i=0;i<MAX_NUM_LOGS;i++) {
DataFlash.WriteInt(start_pages[i]);
DataFlash.WriteInt(end_pages[i]);
}
DataFlash.WriteByte(END_BYTE);
DataFlash.FinishWrite();
DataFlash.StartWrite(start_pages[num_existing_logs-1]);
}else{
gcs.send_text_P(SEVERITY_LOW,PSTR("<start_new_log> Logs full"));
}
}
void get_log_boundaries(byte num_logs, byte log_num, int & start_page, int & end_page)
{
int page = 1;
byte data;
byte log_step = 0;
DataFlash.StartRead(1);
while (page = 1) {
data = DataFlash.ReadByte();
switch(log_step) //This is a state machine to read the packets
{
case 0:
if(data==HEAD_BYTE1) // Head byte 1
log_step++;
break;
case 1:
if(data==HEAD_BYTE2) // Head byte 2
log_step++;
else
log_step = 0;
break;
case 2:
if(data==LOG_INDEX_MSG){
byte num_logs = DataFlash.ReadByte();
for(int i=0;i<log_num;i++) {
start_page = DataFlash.ReadInt();
end_page = DataFlash.ReadInt();
}
if(log_num==num_logs)
end_page = find_last_log_page(start_page);
return; // This is the normal exit point
}else{
log_step=0; // Restart, we have a problem...
}
break;
}
page = DataFlash.GetPage();
}
// Error condition if we reach here with page = 2 TO DO - report condition
}
int find_last_log_page(int bottom_page)
{
int top_page = 4096;
int look_page;
long check;
while((top_page - bottom_page) > 1) {
look_page = (top_page + bottom_page) / 2;
DataFlash.StartRead(look_page);
check = DataFlash.ReadLong();
if(check == 0xFFFFFFFF)
top_page = look_page;
else
bottom_page = look_page;
}
return top_page;
}
// Write an attitude packet. Total length : 10 bytes
void Log_Write_Attitude(int log_roll, int log_pitch, uint16_t log_yaw)
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_ATTITUDE_MSG);
DataFlash.WriteInt(log_roll);
DataFlash.WriteInt(log_pitch);
DataFlash.WriteInt(log_yaw);
DataFlash.WriteByte(END_BYTE);
}
// Write a performance monitoring packet. Total length : 19 bytes
void Log_Write_Performance()
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_PERFORMANCE_MSG);
DataFlash.WriteLong(millis()- perf_mon_timer);
DataFlash.WriteInt(mainLoop_count);
DataFlash.WriteInt(G_Dt_max);
DataFlash.WriteByte(dcm.gyro_sat_count);
DataFlash.WriteByte(imu.adc_constraints);
DataFlash.WriteByte(dcm.renorm_sqrt_count);
DataFlash.WriteByte(dcm.renorm_blowup_count);
DataFlash.WriteByte(gps_fix_count);
DataFlash.WriteInt((int)(dcm.get_health() * 1000));
DataFlash.WriteByte(END_BYTE);
}
// Write a command processing packet. Total length : 19 bytes
//void Log_Write_Cmd(byte num, byte id, byte p1, long alt, long lat, long lng)
void Log_Write_Cmd(byte num, struct Location *wp)
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_CMD_MSG);
DataFlash.WriteByte(num);
DataFlash.WriteByte(wp->id);
DataFlash.WriteByte(wp->p1);
DataFlash.WriteByte(wp->options);
DataFlash.WriteLong(wp->alt);
DataFlash.WriteLong(wp->lat);
DataFlash.WriteLong(wp->lng);
DataFlash.WriteByte(END_BYTE);
}
void Log_Write_Nav_Tuning()
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_NAV_TUNING_MSG);
DataFlash.WriteInt((int)(dcm.yaw_sensor/100)); // 1
DataFlash.WriteInt((int)wp_distance); // 2
DataFlash.WriteInt((int)(target_bearing/100)); // 3
DataFlash.WriteInt((int)(nav_bearing/100)); // 4
DataFlash.WriteInt((int)(g.rc_3.servo_out)); // 5
DataFlash.WriteByte(altitude_sensor); // 6
DataFlash.WriteInt((int)sonar_alt); // 7
DataFlash.WriteInt((int)baro_alt); // 8
DataFlash.WriteInt(home.alt); // 9
DataFlash.WriteInt((int)next_WP.alt); // 11
DataFlash.WriteInt((int)altitude_error); // 11
DataFlash.WriteByte(END_BYTE);
}
void Log_Read_Nav_Tuning()
{
// 1 2 3 4 5 6 7 8 9 10 11
Serial.printf_P(PSTR("NTUN, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d\n"),
DataFlash.ReadInt(), //yaw sensor
DataFlash.ReadInt(), //distance
DataFlash.ReadInt(), //target bearing
DataFlash.ReadInt(), //nav bearing
DataFlash.ReadInt(), //throttle
DataFlash.ReadByte(), //Alt sensor
DataFlash.ReadInt(), //Sonar
DataFlash.ReadInt(), //Baro
DataFlash.ReadInt(), //home.alt
DataFlash.ReadInt(), //Next_alt
DataFlash.ReadInt()); //Alt Error
}
// Write a mode packet. Total length : 5 bytes
void Log_Write_Mode(byte mode)
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_MODE_MSG);
DataFlash.WriteByte(mode);
DataFlash.WriteByte(END_BYTE);
}
// Write an GPS packet. Total length : 30 bytes
void Log_Write_GPS()
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_GPS_MSG);
DataFlash.WriteLong(g_gps->time); // 1
DataFlash.WriteByte(g_gps->fix); // 2
DataFlash.WriteByte(g_gps->num_sats); // 3
DataFlash.WriteLong(current_loc.lat); // 4
DataFlash.WriteLong(current_loc.lng); // 5
DataFlash.WriteLong(g_gps->altitude); // 6
DataFlash.WriteLong(current_loc.alt); // 7
DataFlash.WriteInt(g_gps->ground_speed); // 8
DataFlash.WriteInt((int)(g_gps->ground_course/100)); // 9
DataFlash.WriteByte(END_BYTE);
}
// Read a GPS packet
void Log_Read_GPS()
{ // 1 2 3 4 5 6 7 8 9
// GPS, t, 1, 8, 37.7659070, -122.4329400, 57.0500, 58.1400, 658.8400, -11636846.0000
// 1 2 3 4 5 6 7 8 9
Serial.printf_P(PSTR("GPS, %ld, %d, %d, %4.7f, %4.7f, %4.4f, %4.4f, %4.4f, %4.4f\n"),
DataFlash.ReadLong(), // 1 time
(int)DataFlash.ReadByte(), // 2 fix
(int)DataFlash.ReadByte(), // 3 sats
(float)DataFlash.ReadLong() / t7, // 4 lat
(float)DataFlash.ReadLong() / t7, // 5 lon
(float)DataFlash.ReadLong() / 100.0, // 6 gps alt
(float)DataFlash.ReadLong() / 100.0, // 7 sensor alt
(float)DataFlash.ReadInt() / 100.0, // 8 ground speed
(float)DataFlash.ReadInt()); // 9 ground course
}
// Write an raw accel/gyro data packet. Total length : 28 bytes
#if HIL_MODE != HIL_MODE_ATTITUDE
void Log_Write_Raw()
{
Vector3f gyro = imu.get_gyro();
Vector3f accel = imu.get_accel();
gyro *= t7; // Scale up for storage as long integers
accel *= t7;
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_RAW_MSG);
DataFlash.WriteLong((long)gyro.x);
DataFlash.WriteLong((long)gyro.y);
DataFlash.WriteLong((long)gyro.z);
DataFlash.WriteLong((long)accel.x);
DataFlash.WriteLong((long)accel.y);
DataFlash.WriteLong((long)accel.z);
DataFlash.WriteByte(END_BYTE);
}
#endif
void Log_Write_Current()
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_CURRENT_MSG);
DataFlash.WriteInt(g.rc_3.control_in);
DataFlash.WriteInt((int)(current_voltage * 100.0));
DataFlash.WriteInt((int)(current_amps * 100.0));
DataFlash.WriteInt((int)current_total);
DataFlash.WriteByte(END_BYTE);
}
// Read a Current packet
void Log_Read_Current()
{
Serial.printf_P(PSTR("CURR: %d, %4.4f, %4.4f, %d\n"),
DataFlash.ReadInt(),
((float)DataFlash.ReadInt() / 100.f),
((float)DataFlash.ReadInt() / 100.f),
DataFlash.ReadInt());
}
// Write a control tuning packet. Total length : 22 bytes
#if HIL_MODE != HIL_MODE_ATTITUDE
void Log_Write_Control_Tuning()
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_CONTROL_TUNING_MSG);
// Control
DataFlash.WriteInt((int)(g.rc_3.control_in));
DataFlash.WriteInt((int)(g.rc_3.servo_out));
DataFlash.WriteInt((int)(g.rc_4.control_in));
DataFlash.WriteInt((int)(g.rc_4.servo_out));
// yaw
DataFlash.WriteInt((int)yaw_error);
DataFlash.WriteInt((int)(dcm.yaw_sensor/100));
// Yaw mode
DataFlash.WriteByte(yaw_debug);
// Gyro Rates
DataFlash.WriteInt((int)(omega.x * 1000));
DataFlash.WriteInt((int)(omega.y * 1000));
DataFlash.WriteInt((int)(omega.z * 1000));
DataFlash.WriteInt((int)g.throttle_cruise);
DataFlash.WriteInt((int)g.pid_baro_throttle.get_integrator());
DataFlash.WriteInt((int)g.pid_sonar_throttle.get_integrator());
// Position
//DataFlash.WriteInt((int)dcm.pitch_sensor);
//DataFlash.WriteInt((int)dcm.roll_sensor);
//DataFlash.WriteInt((int)(dcm.yaw_sensor/10));
DataFlash.WriteByte(END_BYTE);
}
#endif
// Read an control tuning packet
void Log_Read_Control_Tuning()
{
Serial.printf_P(PSTR("CTUN, %d, %d, %d, %d, %d, %d, %d, %1.4f, %1.4f, %1.4f, %d, %d, %d\n"),
// Control
DataFlash.ReadInt(),
DataFlash.ReadInt(),
DataFlash.ReadInt(),
DataFlash.ReadInt(),
// yaw
DataFlash.ReadInt(),
DataFlash.ReadInt(),
// Yaw Mode
(int)DataFlash.ReadByte(),
// Gyro Rates
(float)DataFlash.ReadInt() / 1000.0,
(float)DataFlash.ReadInt() / 1000.0,
(float)DataFlash.ReadInt() / 1000.0,
// Position
//DataFlash.ReadInt(),
//DataFlash.ReadInt(),
//(long)DataFlash.ReadInt() * 10);
// Alt Hold
DataFlash.ReadInt(),
DataFlash.ReadInt(),
DataFlash.ReadInt());
}
// Read a performance packet
void Log_Read_Performance()
{
long pm_time;
int logvar;
Serial.printf_P(PSTR("PM:"));
pm_time = DataFlash.ReadLong();
Serial.print(pm_time);
Serial.print(comma);
for (int y = 1; y < 9; y++) {
if(y < 3 || y > 7){
logvar = DataFlash.ReadInt();
}else{
logvar = DataFlash.ReadByte();
}
Serial.print(logvar);
Serial.print(comma);
}
Serial.println(" ");
}
// Read a command processing packet
void Log_Read_Cmd()
{
byte logvarb;
long logvarl;
Serial.printf_P(PSTR("CMD:"));
for(int i = 1; i <= 4; i++) {
logvarb = DataFlash.ReadByte();
Serial.print(logvarb, DEC);
Serial.print(comma);
}
for(int i = 1; i <= 3; i++) {
logvarl = DataFlash.ReadLong();
Serial.print(logvarl, DEC);
Serial.print(comma);
}
Serial.println(" ");
}
// Read an attitude packet
void Log_Read_Attitude()
{
Serial.printf_P(PSTR("ATT: %d, %d, %u\n"),
DataFlash.ReadInt(),
DataFlash.ReadInt(),
(uint16_t)DataFlash.ReadInt());
}
// Read a mode packet
void Log_Read_Mode()
{
Serial.printf_P(PSTR("MOD:"));
Serial.println(flight_mode_strings[DataFlash.ReadByte()]);
}
// Read a raw accel/gyro packet
void Log_Read_Raw()
{
float logvar;
Serial.printf_P(PSTR("RAW:"));
for (int y = 0; y < 6; y++) {
logvar = (float)DataFlash.ReadLong() / t7;
Serial.print(logvar);
Serial.print(comma);
}
Serial.println(" ");
}
// Read the DataFlash log memory : Packet Parser
void Log_Read(int start_page, int end_page)
{
byte data;
byte log_step = 0;
int packet_count = 0;
int page = start_page;
DataFlash.StartRead(start_page);
while (page < end_page && page != -1){
data = DataFlash.ReadByte();
// This is a state machine to read the packets
switch(log_step){
case 0:
if(data == HEAD_BYTE1) // Head byte 1
log_step++;
break;
case 1:
if(data == HEAD_BYTE2) // Head byte 2
log_step++;
else
log_step = 0;
break;
case 2:
if(data == LOG_ATTITUDE_MSG){
Log_Read_Attitude();
log_step++;
}else if(data == LOG_MODE_MSG){
Log_Read_Mode();
log_step++;
}else if(data == LOG_CONTROL_TUNING_MSG){
Log_Read_Control_Tuning();
log_step++;
}else if(data == LOG_NAV_TUNING_MSG){
Log_Read_Nav_Tuning();
log_step++;
}else if(data == LOG_PERFORMANCE_MSG){
Log_Read_Performance();
log_step++;
}else if(data == LOG_RAW_MSG){
Log_Read_Raw();
log_step++;
}else if(data == LOG_CMD_MSG){
Log_Read_Cmd();
log_step++;
}else if(data == LOG_CURRENT_MSG){
Log_Read_Current();
log_step++;
}else if(data == LOG_STARTUP_MSG){
// not implemented
log_step++;
}else if(data == LOG_GPS_MSG){
Log_Read_GPS();
log_step++;
}else{
Serial.printf_P(PSTR("Error P: %d\n"),packet_count);
log_step = 0; // Restart, we have a problem...
}
break;
case 3:
if(data == END_BYTE){
packet_count++;
}else{
Serial.printf_P(PSTR("Error EB: %d\n"),data);
}
log_step = 0; // Restart sequence: new packet...
break;
}
page = DataFlash.GetPage();
}
//Serial.printf_P(PSTR("# of packets read: %d\n"), packet_count);
}