2017-04-13 00:20:37 -03:00
|
|
|
/*
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
/*
|
|
|
|
temperature calibration library
|
|
|
|
*/
|
|
|
|
|
2023-11-02 22:06:20 -03:00
|
|
|
#include "AP_TempCalibration_config.h"
|
|
|
|
|
|
|
|
#if AP_TEMPCALIBRATION_ENABLED
|
|
|
|
|
2017-04-13 00:20:37 -03:00
|
|
|
#include "AP_TempCalibration.h"
|
|
|
|
#include <stdio.h>
|
2019-06-26 23:33:13 -03:00
|
|
|
#include <AP_Baro/AP_Baro.h>
|
2017-04-13 00:20:37 -03:00
|
|
|
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
|
|
|
|
#define TCAL_DEBUG 0
|
|
|
|
|
|
|
|
#if TCAL_DEBUG
|
|
|
|
# define debug(fmt, args ...) do {printf("%s:%d: " fmt "\n", __FUNCTION__, __LINE__, ## args); } while(0)
|
|
|
|
#else
|
|
|
|
# define debug(fmt, args ...)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// table of user settable and learned parameters
|
|
|
|
const AP_Param::GroupInfo AP_TempCalibration::var_info[] = {
|
|
|
|
|
2018-11-11 21:45:00 -04:00
|
|
|
// @Param: _ENABLED
|
2017-04-13 00:20:37 -03:00
|
|
|
// @DisplayName: Temperature calibration enable
|
|
|
|
// @Description: Enable temperature calibration. Set to 0 to disable. Set to 1 to use learned values. Set to 2 to learn new values and use the values
|
|
|
|
// @Values: 0:Disabled,1:Enabled,2:EnableAndLearn
|
|
|
|
// @User: Advanced
|
|
|
|
AP_GROUPINFO_FLAGS("_ENABLED", 1, AP_TempCalibration, enabled, TC_DISABLED, AP_PARAM_FLAG_ENABLE),
|
|
|
|
|
2018-11-11 21:45:00 -04:00
|
|
|
// @Param: _TEMP_MIN
|
|
|
|
// @DisplayName: Temperature calibration min learned temperature
|
2017-04-13 00:20:37 -03:00
|
|
|
// @Description: Minimum learned temperature. This is automatically set by the learning process
|
2018-01-15 23:09:14 -04:00
|
|
|
// @Units: degC
|
2017-04-13 00:20:37 -03:00
|
|
|
// @ReadOnly: True
|
|
|
|
// @Volatile: True
|
|
|
|
// @User: Advanced
|
|
|
|
AP_GROUPINFO("_TEMP_MIN", 2, AP_TempCalibration, temp_min, 0),
|
|
|
|
|
2018-07-09 09:05:31 -03:00
|
|
|
// 3 was used by a duplicated temp_min entry (do not use in the future!)
|
2017-04-13 00:20:37 -03:00
|
|
|
|
2018-11-11 21:45:00 -04:00
|
|
|
// @Param: _TEMP_MAX
|
|
|
|
// @DisplayName: Temperature calibration max learned temperature
|
2017-04-13 00:20:37 -03:00
|
|
|
// @Description: Maximum learned temperature. This is automatically set by the learning process
|
2018-01-15 23:09:14 -04:00
|
|
|
// @Units: degC
|
2017-04-13 00:20:37 -03:00
|
|
|
// @ReadOnly: True
|
|
|
|
// @Volatile: True
|
|
|
|
// @User: Advanced
|
|
|
|
AP_GROUPINFO("_TEMP_MAX", 4, AP_TempCalibration, temp_max, 0),
|
|
|
|
|
2018-11-11 21:45:00 -04:00
|
|
|
// @Param: _BARO_EXP
|
|
|
|
// @DisplayName: Temperature Calibration barometer exponent
|
2017-04-13 00:20:37 -03:00
|
|
|
// @Description: Learned exponent for barometer temperature correction
|
|
|
|
// @ReadOnly: True
|
|
|
|
// @Volatile: True
|
|
|
|
// @User: Advanced
|
|
|
|
AP_GROUPINFO("_BARO_EXP", 5, AP_TempCalibration, baro_exponent, 0),
|
|
|
|
|
|
|
|
AP_GROUPEND
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
calculate the correction given an exponent and a temperature
|
|
|
|
|
|
|
|
This one parameter correction is deliberately chosen to be very
|
|
|
|
robust for extrapolation. It fits the characteristics of the
|
|
|
|
ICM-20789 barometer nicely.
|
|
|
|
*/
|
|
|
|
float AP_TempCalibration::calculate_correction(float temp, float exponent) const
|
|
|
|
{
|
|
|
|
return powf(MAX(temp - Tzero, 0), exponent);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
setup for learning
|
|
|
|
*/
|
|
|
|
void AP_TempCalibration::setup_learning(void)
|
|
|
|
{
|
2018-03-05 16:36:06 -04:00
|
|
|
learn_temp_start = AP::baro().get_temperature();
|
2017-04-13 00:20:37 -03:00
|
|
|
learn_temp_step = 0.25;
|
|
|
|
learn_count = 200;
|
|
|
|
learn_i = 0;
|
2021-02-03 10:13:58 -04:00
|
|
|
delete [] learn_values;
|
2024-05-26 22:24:15 -03:00
|
|
|
learn_values = NEW_NOTHROW float[learn_count];
|
2017-04-13 00:20:37 -03:00
|
|
|
if (learn_values == nullptr) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
calculate the sum of squares range of pressure values we get with
|
|
|
|
the current data. This is the function we try to minimise in the
|
|
|
|
calibration
|
|
|
|
*/
|
|
|
|
float AP_TempCalibration::calculate_p_range(float baro_factor) const
|
|
|
|
{
|
|
|
|
float sum = 0;
|
|
|
|
float P0 = learn_values[0] + calculate_correction(learn_temp_start, baro_factor);
|
|
|
|
for (uint16_t i=0; i<learn_i; i++) {
|
|
|
|
if (is_zero(learn_values[i])) {
|
|
|
|
// gap in the data
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
float temp = learn_temp_start + learn_temp_step*i;
|
|
|
|
float correction = calculate_correction(temp, baro_factor);
|
|
|
|
float P = learn_values[i] + correction;
|
|
|
|
sum += sq(P - P0);
|
|
|
|
}
|
|
|
|
return sum / learn_i;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
calculate a calibration value
|
|
|
|
|
|
|
|
This fits a simple single value power function to the baro data to
|
|
|
|
find the calibration exponent.
|
|
|
|
*/
|
|
|
|
void AP_TempCalibration::calculate_calibration(void)
|
|
|
|
{
|
|
|
|
float current_err = calculate_p_range(baro_exponent);
|
|
|
|
float test_exponent = baro_exponent + learn_delta;
|
|
|
|
float test_err = calculate_p_range(test_exponent);
|
|
|
|
if (test_err >= current_err) {
|
|
|
|
test_exponent = baro_exponent - learn_delta;
|
|
|
|
test_err = calculate_p_range(test_exponent);
|
|
|
|
}
|
|
|
|
if (test_exponent <= exp_limit_max &&
|
|
|
|
test_exponent >= exp_limit_min &&
|
|
|
|
test_err < current_err) {
|
|
|
|
// move to new value
|
|
|
|
debug("CAL: %.2f\n", test_exponent);
|
2018-02-07 18:34:43 -04:00
|
|
|
if (!is_equal(test_exponent, baro_exponent.get())) {
|
|
|
|
baro_exponent.set_and_save(test_exponent);
|
|
|
|
}
|
2017-04-13 00:20:37 -03:00
|
|
|
temp_min.set_and_save_ifchanged(learn_temp_start);
|
|
|
|
temp_max.set_and_save_ifchanged(learn_temp_start + learn_i*learn_temp_step);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
update calibration learning
|
|
|
|
*/
|
|
|
|
void AP_TempCalibration::learn_calibration(void)
|
|
|
|
{
|
|
|
|
// just for first baro now
|
2018-03-05 16:36:06 -04:00
|
|
|
const AP_Baro &baro = AP::baro();
|
2017-04-13 00:20:37 -03:00
|
|
|
if (!baro.healthy(0) ||
|
|
|
|
hal.util->get_soft_armed() ||
|
|
|
|
baro.get_temperature(0) < Tzero) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// if we have any movement then we reset learning
|
|
|
|
if (learn_values == nullptr ||
|
2018-03-16 02:31:03 -03:00
|
|
|
!AP::ins().is_still()) {
|
2017-04-13 00:20:37 -03:00
|
|
|
debug("learn reset\n");
|
|
|
|
setup_learning();
|
|
|
|
if (learn_values == nullptr) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
float temp = baro.get_temperature(0);
|
|
|
|
float P = baro.get_pressure(0);
|
|
|
|
uint16_t idx = (temp - learn_temp_start) / learn_temp_step;
|
|
|
|
if (idx >= learn_count) {
|
|
|
|
// could change learn_temp_step here
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (is_zero(learn_values[idx])) {
|
|
|
|
learn_values[idx] = P;
|
|
|
|
debug("learning %u %.2f at %.2f\n", idx, learn_values[idx], temp);
|
|
|
|
} else {
|
|
|
|
// filter in new value
|
|
|
|
learn_values[idx] = 0.9 * learn_values[idx] + 0.1 * P;
|
|
|
|
}
|
|
|
|
learn_i = MAX(learn_i, idx);
|
|
|
|
|
|
|
|
uint32_t now = AP_HAL::millis();
|
|
|
|
if (now - last_learn_ms > 100 &&
|
|
|
|
idx*learn_temp_step > min_learn_temp_range &&
|
|
|
|
temp - learn_temp_start > temp_max - temp_min) {
|
|
|
|
last_learn_ms = now;
|
|
|
|
// run estimation and update parameters
|
|
|
|
calculate_calibration();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
apply learned calibration for current temperature
|
|
|
|
*/
|
|
|
|
void AP_TempCalibration::apply_calibration(void)
|
|
|
|
{
|
2018-03-05 16:36:06 -04:00
|
|
|
AP_Baro &baro = AP::baro();
|
2017-04-13 00:20:37 -03:00
|
|
|
// just for first baro now
|
|
|
|
if (!baro.healthy(0)) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
float temp = baro.get_temperature(0);
|
|
|
|
float correction = calculate_correction(temp, baro_exponent);
|
|
|
|
baro.set_pressure_correction(0, correction);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
called at 10Hz from the main thread. This is called both when armed
|
|
|
|
and disarmed. It only does learning while disarmed, but needs to
|
|
|
|
supply the corrections to the sensor libraries at all times
|
|
|
|
*/
|
|
|
|
void AP_TempCalibration::update(void)
|
|
|
|
{
|
|
|
|
switch (enabled.get()) {
|
|
|
|
case TC_DISABLED:
|
|
|
|
break;
|
|
|
|
case TC_ENABLE_LEARN:
|
|
|
|
learn_calibration();
|
2018-03-20 11:53:02 -03:00
|
|
|
FALLTHROUGH;
|
2017-04-13 00:20:37 -03:00
|
|
|
case TC_ENABLE_USE:
|
|
|
|
apply_calibration();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
2023-11-02 22:06:20 -03:00
|
|
|
|
|
|
|
#endif // AP_TEMPCALIBRATION_ENABLED
|