2020-07-18 16:49:08 -03:00
|
|
|
/*
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
/*
|
|
|
|
* NMEA Sensor driver for VHW ans MTW messages over Serial
|
|
|
|
* https://gpsd.gitlab.io/gpsd/NMEA.html#_vhw_water_speed_and_heading
|
|
|
|
* https://gpsd.gitlab.io/gpsd/NMEA.html#_mtw_mean_temperature_of_water
|
|
|
|
*/
|
|
|
|
|
2022-05-04 05:13:29 -03:00
|
|
|
#include "AP_Airspeed_NMEA.h"
|
|
|
|
|
|
|
|
#if AP_AIRSPEED_NMEA_ENABLED
|
|
|
|
|
2022-09-29 20:10:39 -03:00
|
|
|
#include <AP_Vehicle/AP_Vehicle_Type.h>
|
2020-07-18 16:49:08 -03:00
|
|
|
#if APM_BUILD_TYPE(APM_BUILD_Rover) || APM_BUILD_TYPE(APM_BUILD_ArduSub)
|
|
|
|
|
|
|
|
#include "AP_Airspeed.h"
|
2022-11-06 19:37:04 -04:00
|
|
|
#include <AP_SerialManager/AP_SerialManager.h>
|
2020-07-18 16:49:08 -03:00
|
|
|
|
|
|
|
#define TIMEOUT_MS 2000
|
|
|
|
|
|
|
|
bool AP_Airspeed_NMEA::init()
|
|
|
|
{
|
|
|
|
const AP_SerialManager& serial_manager = AP::serialmanager();
|
|
|
|
|
|
|
|
_uart = serial_manager.find_serial(AP_SerialManager::SerialProtocol_AirSpeed, 0);
|
|
|
|
if (_uart == nullptr) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2021-06-29 23:35:45 -03:00
|
|
|
set_bus_id(AP_HAL::Device::make_bus_id(AP_HAL::Device::BUS_TYPE_SERIAL,0,0,0));
|
|
|
|
|
2020-07-18 16:49:08 -03:00
|
|
|
_uart->begin(serial_manager.find_baudrate(AP_SerialManager::SerialProtocol_AirSpeed, 0));
|
|
|
|
|
|
|
|
// make sure this sensor cannot be used in the EKF
|
|
|
|
set_use(0);
|
|
|
|
|
|
|
|
// must set use zero offset to pass offset check for health
|
|
|
|
set_use_zero_offset();
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// read the from the sensor
|
|
|
|
bool AP_Airspeed_NMEA::get_airspeed(float &airspeed)
|
|
|
|
{
|
|
|
|
if (_uart == nullptr) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
uint32_t now = AP_HAL::millis();
|
|
|
|
|
|
|
|
// read any available lines from the sensor
|
|
|
|
float sum = 0.0f;
|
|
|
|
uint16_t count = 0;
|
|
|
|
int16_t nbytes = _uart->available();
|
|
|
|
while (nbytes-- > 0) {
|
2023-02-18 02:22:35 -04:00
|
|
|
int16_t c = _uart->read();
|
|
|
|
if (c==-1) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
if (decode(char(c))) {
|
2020-07-18 16:49:08 -03:00
|
|
|
_last_update_ms = now;
|
|
|
|
if (_sentence_type == TYPE_VHW) {
|
|
|
|
sum += _speed;
|
|
|
|
count++;
|
|
|
|
} else {
|
|
|
|
_temp_sum += _temp;
|
|
|
|
_temp_count++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (count == 0) {
|
|
|
|
// Cant return false because updates are too slow, return previous reading
|
|
|
|
// Could return false after some timeout, however testing shows that the DST800 just stops sending the message at zero speed
|
|
|
|
airspeed = _last_speed;
|
|
|
|
} else {
|
|
|
|
// return average of all measurements
|
|
|
|
airspeed = sum / count;
|
|
|
|
_last_speed = airspeed;
|
|
|
|
}
|
|
|
|
|
|
|
|
return (now - _last_update_ms) < TIMEOUT_MS;
|
|
|
|
}
|
|
|
|
|
|
|
|
// return the current temperature in degrees C
|
2023-10-11 04:41:50 -03:00
|
|
|
// the main update is done in the get_pressure function
|
2020-07-18 16:49:08 -03:00
|
|
|
// this just reports the value
|
|
|
|
bool AP_Airspeed_NMEA::get_temperature(float &temperature)
|
|
|
|
{
|
|
|
|
if (_uart == nullptr) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (_temp_count == 0) {
|
|
|
|
temperature = _last_temp;
|
|
|
|
} else {
|
|
|
|
// return average of all measurements
|
|
|
|
temperature = _temp_sum / _temp_count;
|
|
|
|
_last_temp = temperature;
|
|
|
|
_temp_count = 0;
|
|
|
|
_temp_sum = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// add a single character to the buffer and attempt to decode
|
|
|
|
// returns true if a complete sentence was successfully decoded
|
|
|
|
bool AP_Airspeed_NMEA::decode(char c)
|
|
|
|
{
|
|
|
|
switch (c) {
|
|
|
|
case ',':
|
|
|
|
// end of a term, add to checksum
|
|
|
|
_checksum ^= c;
|
|
|
|
FALLTHROUGH;
|
|
|
|
case '\r':
|
|
|
|
case '\n':
|
|
|
|
case '*':
|
|
|
|
{
|
|
|
|
if (!_sentence_done && _sentence_valid) {
|
|
|
|
// null terminate and decode latest term
|
|
|
|
_term[_term_offset] = 0;
|
|
|
|
bool valid_sentence = decode_latest_term();
|
|
|
|
|
|
|
|
// move onto next term
|
|
|
|
_term_number++;
|
|
|
|
_term_offset = 0;
|
|
|
|
_term_is_checksum = (c == '*');
|
|
|
|
return valid_sentence;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
case '$': // sentence begin
|
|
|
|
_term_number = 0;
|
|
|
|
_term_offset = 0;
|
|
|
|
_checksum = 0;
|
|
|
|
_term_is_checksum = false;
|
|
|
|
_sentence_done = false;
|
|
|
|
_sentence_valid = true;
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// ordinary characters are added to term
|
|
|
|
if (_term_offset < sizeof(_term) - 1) {
|
|
|
|
_term[_term_offset++] = c;
|
|
|
|
}
|
|
|
|
if (!_term_is_checksum) {
|
|
|
|
_checksum ^= c;
|
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// decode the most recently consumed term
|
|
|
|
// returns true if new sentence has just passed checksum test and is validated
|
|
|
|
bool AP_Airspeed_NMEA::decode_latest_term()
|
|
|
|
{
|
|
|
|
// handle the last term in a message
|
|
|
|
if (_term_is_checksum) {
|
|
|
|
_sentence_done = true;
|
|
|
|
uint8_t nibble_high = 0;
|
|
|
|
uint8_t nibble_low = 0;
|
|
|
|
if (!hex_to_uint8(_term[0], nibble_high) || !hex_to_uint8(_term[1], nibble_low)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
const uint8_t checksum = (nibble_high << 4u) | nibble_low;
|
|
|
|
return checksum == _checksum;
|
|
|
|
}
|
|
|
|
|
|
|
|
// the first term determines the sentence type
|
|
|
|
if (_term_number == 0) {
|
|
|
|
// the first two letters of the NMEA term are the talker ID.
|
|
|
|
// we accept any two characters here.
|
|
|
|
// actually expecting YX for MTW and VW for VHW
|
|
|
|
if (_term[0] < 'A' || _term[0] > 'Z' ||
|
|
|
|
_term[1] < 'A' || _term[1] > 'Z') {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
const char *term_type = &_term[2];
|
|
|
|
if (strcmp(term_type, "MTW") == 0) {
|
|
|
|
_sentence_type = TPYE_MTW;
|
|
|
|
} else if (strcmp(term_type, "VHW") == 0) {
|
|
|
|
_sentence_type = TYPE_VHW;
|
|
|
|
} else {
|
|
|
|
_sentence_valid = false;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (_sentence_type == TPYE_MTW) {
|
|
|
|
// parse MTW messages
|
|
|
|
if (_term_number == 1) {
|
|
|
|
_temp = strtof(_term, NULL);
|
|
|
|
}
|
|
|
|
} else if (_sentence_type == TYPE_VHW) {
|
|
|
|
// parse VHW messages
|
|
|
|
if (_term_number == 7) {
|
|
|
|
_speed = strtof(_term, NULL) * KM_PER_HOUR_TO_M_PER_SEC;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // APM_BUILD_TYPE(APM_BUILD_Rover) || APM_BUILD_TYPE(APM_BUILD_ArduSub)
|
2022-05-04 05:13:29 -03:00
|
|
|
|
|
|
|
#endif // AP_AIRSPEED_NMEA_ENABLED
|