2011-09-08 22:29:39 -03:00
|
|
|
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
|
|
|
|
static void read_control_switch()
|
|
|
|
{
|
2011-12-24 18:34:31 -04:00
|
|
|
|
2011-09-08 22:29:39 -03:00
|
|
|
byte switchPosition = readSwitch();
|
2011-12-24 18:34:31 -04:00
|
|
|
|
|
|
|
// If switchPosition = 255 this indicates that the mode control channel input was out of range
|
|
|
|
// If we get this value we do not want to change modes.
|
|
|
|
if(switchPosition == 255) return;
|
2011-12-18 18:42:32 -04:00
|
|
|
|
|
|
|
// we look for changes in the switch position. If the
|
|
|
|
// RST_SWITCH_CH parameter is set, then it is a switch that can be
|
|
|
|
// used to force re-reading of the control switch. This is useful
|
|
|
|
// when returning to the previous mode after a failsafe or fence
|
|
|
|
// breach. This channel is best used on a momentary switch (such
|
|
|
|
// as a spring loaded trainer switch).
|
|
|
|
if (oldSwitchPosition != switchPosition ||
|
|
|
|
(g.reset_switch_chan != 0 &&
|
|
|
|
APM_RC.InputCh(g.reset_switch_chan-1) > RESET_SWITCH_CHAN_PWM)) {
|
2011-09-08 22:29:39 -03:00
|
|
|
|
|
|
|
set_mode(flight_modes[switchPosition]);
|
|
|
|
|
|
|
|
oldSwitchPosition = switchPosition;
|
|
|
|
prev_WP = current_loc;
|
|
|
|
|
|
|
|
// reset navigation integrators
|
|
|
|
// -------------------------
|
|
|
|
reset_I();
|
|
|
|
}
|
|
|
|
|
|
|
|
if (g.inverted_flight_ch != 0) {
|
|
|
|
// if the user has configured an inverted flight channel, then
|
|
|
|
// fly upside down when that channel goes above INVERTED_FLIGHT_PWM
|
|
|
|
inverted_flight = (control_mode != MANUAL && APM_RC.InputCh(g.inverted_flight_ch-1) > INVERTED_FLIGHT_PWM);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static byte readSwitch(void){
|
|
|
|
uint16_t pulsewidth = APM_RC.InputCh(g.flight_mode_channel - 1);
|
2011-12-24 18:34:31 -04:00
|
|
|
if (pulsewidth <= 910 || pulsewidth >= 2090) return 255; // This is an error condition
|
2011-09-08 22:29:39 -03:00
|
|
|
if (pulsewidth > 1230 && pulsewidth <= 1360) return 1;
|
|
|
|
if (pulsewidth > 1360 && pulsewidth <= 1490) return 2;
|
|
|
|
if (pulsewidth > 1490 && pulsewidth <= 1620) return 3;
|
|
|
|
if (pulsewidth > 1620 && pulsewidth <= 1749) return 4; // Software Manual
|
|
|
|
if (pulsewidth >= 1750) return 5; // Hardware Manual
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void reset_control_switch()
|
|
|
|
{
|
|
|
|
oldSwitchPosition = 0;
|
|
|
|
read_control_switch();
|
|
|
|
}
|
|
|
|
|
|
|
|
static void update_servo_switches()
|
|
|
|
{
|
2011-11-25 19:11:36 -04:00
|
|
|
#if CONFIG_APM_HARDWARE != APM_HARDWARE_APM2
|
2011-09-08 22:29:39 -03:00
|
|
|
if (!g.switch_enable) {
|
|
|
|
// switches are disabled in EEPROM (see SWITCH_ENABLE option)
|
|
|
|
// this means the EEPROM control of all channel reversal is enabled
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// up is reverse
|
|
|
|
// up is elevon
|
|
|
|
g.mix_mode = (PINL & 128) ? 1 : 0; // 1 for elevon mode
|
|
|
|
if (g.mix_mode == 0) {
|
|
|
|
g.channel_roll.set_reverse((PINE & 128) ? true : false);
|
|
|
|
g.channel_pitch.set_reverse((PINE & 64) ? true : false);
|
|
|
|
g.channel_rudder.set_reverse((PINL & 64) ? true : false);
|
|
|
|
} else {
|
|
|
|
g.reverse_elevons = (PINE & 128) ? true : false;
|
|
|
|
g.reverse_ch1_elevon = (PINE & 64) ? true : false;
|
|
|
|
g.reverse_ch2_elevon = (PINL & 64) ? true : false;
|
|
|
|
}
|
2011-11-15 07:17:01 -04:00
|
|
|
#endif
|
2011-09-08 22:29:39 -03:00
|
|
|
}
|