ardupilot/libraries/AP_HAL_VRBRAIN/Scheduler.cpp

461 lines
12 KiB
C++
Raw Normal View History

#include <AP_HAL/AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
#include "AP_HAL_VRBRAIN.h"
#include "Scheduler.h"
#include <unistd.h>
#include <stdlib.h>
#include <sched.h>
#include <errno.h>
#include <stdio.h>
#include <drivers/drv_hrt.h>
#include <nuttx/arch.h>
#include <systemlib/systemlib.h>
#include <pthread.h>
#include <poll.h>
#include "UARTDriver.h"
#include "AnalogIn.h"
#include "Storage.h"
#include "RCOutput.h"
#include "RCInput.h"
#include <AP_Scheduler/AP_Scheduler.h>
#include <AP_BoardConfig/AP_BoardConfig.h>
#if HAL_WITH_UAVCAN
#include "CAN.h"
#include <AP_UAVCAN/AP_UAVCAN.h>
#endif
using namespace VRBRAIN;
extern const AP_HAL::HAL& hal;
extern bool _vrbrain_thread_should_exit;
VRBRAINScheduler::VRBRAINScheduler() :
_perf_timers(perf_alloc(PC_ELAPSED, "APM_timers")),
_perf_io_timers(perf_alloc(PC_ELAPSED, "APM_IO_timers")),
_perf_storage_timer(perf_alloc(PC_ELAPSED, "APM_storage_timers")),
_perf_delay(perf_alloc(PC_ELAPSED, "APM_delay"))
{}
void VRBRAINScheduler::init()
{
_main_task_pid = getpid();
// setup the timer thread - this will call tasks at 1kHz
pthread_attr_t thread_attr;
struct sched_param param;
pthread_attr_init(&thread_attr);
pthread_attr_setstacksize(&thread_attr, 2048);
param.sched_priority = APM_TIMER_PRIORITY;
(void)pthread_attr_setschedparam(&thread_attr, &param);
pthread_attr_setschedpolicy(&thread_attr, SCHED_FIFO);
pthread_create(&_timer_thread_ctx, &thread_attr, &VRBRAIN::VRBRAINScheduler::_timer_thread, this);
// the UART thread runs at a medium priority
pthread_attr_init(&thread_attr);
pthread_attr_setstacksize(&thread_attr, 2048);
param.sched_priority = APM_UART_PRIORITY;
(void)pthread_attr_setschedparam(&thread_attr, &param);
pthread_attr_setschedpolicy(&thread_attr, SCHED_FIFO);
pthread_create(&_uart_thread_ctx, &thread_attr, &VRBRAIN::VRBRAINScheduler::_uart_thread, this);
// the IO thread runs at lower priority
pthread_attr_init(&thread_attr);
pthread_attr_setstacksize(&thread_attr, 2048);
param.sched_priority = APM_IO_PRIORITY;
(void)pthread_attr_setschedparam(&thread_attr, &param);
pthread_attr_setschedpolicy(&thread_attr, SCHED_FIFO);
pthread_create(&_io_thread_ctx, &thread_attr, &VRBRAIN::VRBRAINScheduler::_io_thread, this);
// the storage thread runs at just above IO priority
pthread_attr_init(&thread_attr);
pthread_attr_setstacksize(&thread_attr, 1024);
param.sched_priority = APM_STORAGE_PRIORITY;
(void)pthread_attr_setschedparam(&thread_attr, &param);
pthread_attr_setschedpolicy(&thread_attr, SCHED_FIFO);
pthread_create(&_storage_thread_ctx, &thread_attr, &VRBRAIN::VRBRAINScheduler::_storage_thread, this);
}
void VRBRAINScheduler::create_uavcan_thread()
{
#if HAL_WITH_UAVCAN
pthread_attr_t thread_attr;
struct sched_param param;
//the UAVCAN thread runs at medium priority
pthread_attr_init(&thread_attr);
pthread_attr_setstacksize(&thread_attr, 8192);
param.sched_priority = APM_CAN_PRIORITY;
(void) pthread_attr_setschedparam(&thread_attr, &param);
pthread_attr_setschedpolicy(&thread_attr, SCHED_FIFO);
for (uint8_t i = 0; i < MAX_NUMBER_OF_CAN_DRIVERS; i++) {
if (hal.can_mgr[i] != nullptr) {
if (hal.can_mgr[i]->get_UAVCAN() != nullptr) {
_uavcan_thread_arg *arg = new _uavcan_thread_arg;
arg->sched = this;
arg->uavcan_number = i;
pthread_create(&_uavcan_thread_ctx, &thread_attr, &VRBRAINScheduler::_uavcan_thread, arg);
}
}
}
#endif
}
/**
delay for a specified number of microseconds using a semaphore wait
*/
void VRBRAINScheduler::delay_microseconds_semaphore(uint16_t usec)
{
sem_t wait_semaphore;
struct hrt_call wait_call;
sem_init(&wait_semaphore, 0, 0);
memset(&wait_call, 0, sizeof(wait_call));
hrt_call_after(&wait_call, usec, (hrt_callout)sem_post, &wait_semaphore);
sem_wait(&wait_semaphore);
}
void VRBRAINScheduler::delay_microseconds(uint16_t usec)
{
perf_begin(_perf_delay);
delay_microseconds_semaphore(usec);
perf_end(_perf_delay);
}
/*
wrapper around sem_post that boosts main thread priority
*/
static void sem_post_boost(sem_t *sem)
{
hal_vrbrain_set_priority(APM_MAIN_PRIORITY_BOOST);
sem_post(sem);
}
/*
return the main thread to normal priority
*/
static void set_normal_priority(void *sem)
{
hal_vrbrain_set_priority(APM_MAIN_PRIORITY);
}
/*
a variant of delay_microseconds that boosts priority to
APM_MAIN_PRIORITY_BOOST for APM_MAIN_PRIORITY_BOOST_USEC
microseconds when the time completes. This significantly improves
the regularity of timing of the main loop as it takes
*/
void VRBRAINScheduler::delay_microseconds_boost(uint16_t usec)
{
sem_t wait_semaphore;
static struct hrt_call wait_call;
sem_init(&wait_semaphore, 0, 0);
hrt_call_after(&wait_call, usec, (hrt_callout)sem_post_boost, &wait_semaphore);
sem_wait(&wait_semaphore);
hrt_call_after(&wait_call, APM_MAIN_PRIORITY_BOOST_USEC, (hrt_callout)set_normal_priority, nullptr);
}
void VRBRAINScheduler::delay(uint16_t ms)
{
if (!in_main_thread()) {
::printf("ERROR: delay() from timer process\n");
return;
}
perf_begin(_perf_delay);
uint64_t start = AP_HAL::micros64();
while ((AP_HAL::micros64() - start)/1000 < ms &&
!_vrbrain_thread_should_exit) {
delay_microseconds_semaphore(1000);
if (_min_delay_cb_ms <= ms) {
if (_delay_cb) {
_delay_cb();
}
}
}
perf_end(_perf_delay);
if (_vrbrain_thread_should_exit) {
exit(1);
}
}
void VRBRAINScheduler::register_delay_callback(AP_HAL::Proc proc,
uint16_t min_time_ms)
{
_delay_cb = proc;
_min_delay_cb_ms = min_time_ms;
}
void VRBRAINScheduler::register_timer_process(AP_HAL::MemberProc proc)
{
for (uint8_t i = 0; i < _num_timer_procs; i++) {
if (_timer_proc[i] == proc) {
return;
}
}
if (_num_timer_procs < VRBRAIN_SCHEDULER_MAX_TIMER_PROCS) {
_timer_proc[_num_timer_procs] = proc;
_num_timer_procs++;
} else {
hal.console->printf("Out of timer processes\n");
}
}
void VRBRAINScheduler::register_io_process(AP_HAL::MemberProc proc)
{
for (uint8_t i = 0; i < _num_io_procs; i++) {
if (_io_proc[i] == proc) {
return;
}
}
if (_num_io_procs < VRBRAIN_SCHEDULER_MAX_TIMER_PROCS) {
_io_proc[_num_io_procs] = proc;
_num_io_procs++;
} else {
hal.console->printf("Out of IO processes\n");
}
}
void VRBRAINScheduler::register_timer_failsafe(AP_HAL::Proc failsafe, uint32_t period_us)
{
_failsafe = failsafe;
}
void VRBRAINScheduler::suspend_timer_procs()
{
_timer_suspended = true;
}
void VRBRAINScheduler::resume_timer_procs()
{
_timer_suspended = false;
if (_timer_event_missed == true) {
_run_timers(false);
_timer_event_missed = false;
}
}
void VRBRAINScheduler::reboot(bool hold_in_bootloader)
{
// disarm motors to ensure they are off during a bootloader upload
hal.rcout->force_safety_on();
hal.rcout->force_safety_no_wait();
// delay to ensure the async force_saftey operation completes
delay(500);
px4_systemreset(hold_in_bootloader);
}
void VRBRAINScheduler::_run_timers(bool called_from_timer_thread)
{
if (_in_timer_proc) {
return;
}
_in_timer_proc = true;
if (!_timer_suspended) {
// now call the timer based drivers
for (int i = 0; i < _num_timer_procs; i++) {
if (_timer_proc[i]) {
_timer_proc[i]();
}
}
} else if (called_from_timer_thread) {
_timer_event_missed = true;
}
// and the failsafe, if one is setup
if (_failsafe != nullptr) {
_failsafe();
}
// process analog input
((VRBRAINAnalogIn *)hal.analogin)->_timer_tick();
_in_timer_proc = false;
}
extern bool vrbrain_ran_overtime;
void *VRBRAINScheduler::_timer_thread(void *arg)
{
VRBRAINScheduler *sched = (VRBRAINScheduler *)arg;
uint32_t last_ran_overtime = 0;
pthread_setname_np(pthread_self(), "apm_timer");
while (!sched->_hal_initialized) {
poll(nullptr, 0, 1);
}
while (!_vrbrain_thread_should_exit) {
sched->delay_microseconds_semaphore(1000);
// run registered timers
perf_begin(sched->_perf_timers);
sched->_run_timers(true);
perf_end(sched->_perf_timers);
// process any pending RC output requests
hal.rcout->timer_tick();
// process any pending RC input requests
((VRBRAINRCInput *)hal.rcin)->_timer_tick();
if (vrbrain_ran_overtime && AP_HAL::millis() - last_ran_overtime > 2000) {
last_ran_overtime = AP_HAL::millis();
#if 0
printf("Overtime in task %d\n", (int)AP_Scheduler::current_task);
hal.console->printf("Overtime in task %d\n", (int)AP_Scheduler::current_task);
#endif
}
}
return nullptr;
}
void VRBRAINScheduler::_run_io(void)
{
if (_in_io_proc) {
return;
}
_in_io_proc = true;
if (!_timer_suspended) {
// now call the IO based drivers
for (int i = 0; i < _num_io_procs; i++) {
if (_io_proc[i]) {
_io_proc[i]();
}
}
}
_in_io_proc = false;
}
void *VRBRAINScheduler::_uart_thread(void *arg)
{
VRBRAINScheduler *sched = (VRBRAINScheduler *)arg;
pthread_setname_np(pthread_self(), "apm_uart");
while (!sched->_hal_initialized) {
poll(nullptr, 0, 1);
}
while (!_vrbrain_thread_should_exit) {
sched->delay_microseconds_semaphore(1000);
// process any pending serial bytes
((VRBRAINUARTDriver *)hal.uartA)->_timer_tick();
((VRBRAINUARTDriver *)hal.uartB)->_timer_tick();
((VRBRAINUARTDriver *)hal.uartC)->_timer_tick();
((VRBRAINUARTDriver *)hal.uartD)->_timer_tick();
((VRBRAINUARTDriver *)hal.uartE)->_timer_tick();
((VRBRAINUARTDriver *)hal.uartF)->_timer_tick();
}
return nullptr;
}
void *VRBRAINScheduler::_io_thread(void *arg)
{
VRBRAINScheduler *sched = (VRBRAINScheduler *)arg;
pthread_setname_np(pthread_self(), "apm_io");
while (!sched->_hal_initialized) {
poll(nullptr, 0, 1);
}
while (!_vrbrain_thread_should_exit) {
sched->delay_microseconds_semaphore(1000);
// run registered IO processes
perf_begin(sched->_perf_io_timers);
sched->_run_io();
perf_end(sched->_perf_io_timers);
}
return nullptr;
}
void *VRBRAINScheduler::_storage_thread(void *arg)
{
VRBRAINScheduler *sched = (VRBRAINScheduler *)arg;
pthread_setname_np(pthread_self(), "apm_storage");
while (!sched->_hal_initialized) {
poll(nullptr, 0, 1);
}
while (!_vrbrain_thread_should_exit) {
sched->delay_microseconds_semaphore(10000);
// process any pending storage writes
perf_begin(sched->_perf_storage_timer);
((VRBRAINStorage *)hal.storage)->_timer_tick();
perf_end(sched->_perf_storage_timer);
}
return nullptr;
}
#if HAL_WITH_UAVCAN
void *VRBRAINScheduler::_uavcan_thread(void *arg)
{
VRBRAINScheduler *sched = ((_uavcan_thread_arg *) arg)->sched;
uint8_t uavcan_number = ((_uavcan_thread_arg *) arg)->uavcan_number;
char name[15];
snprintf(name, sizeof(name), "apm_uavcan:%u", uavcan_number);
pthread_setname_np(pthread_self(), name);
while (!sched->_hal_initialized) {
poll(nullptr, 0, 1);
}
while (!_px4_thread_should_exit) {
if (((VRBRAINCANManager *)hal.can_mgr[uavcan_number])->is_initialized()) {
if (((VRBRAINCANManager *)hal.can_mgr[uavcan_number])->get_UAVCAN() != nullptr) {
(((VRBRAINCANManager *)hal.can_mgr[uavcan_number])->get_UAVCAN())->do_cyclic();
} else {
sched->delay_microseconds_semaphore(10000);
}
} else {
sched->delay_microseconds_semaphore(10000);
}
}
return nullptr;
}
#endif
bool VRBRAINScheduler::in_main_thread() const
{
return getpid() == _main_task_pid;
}
void VRBRAINScheduler::system_initialized()
{
if (_initialized) {
AP_HAL::panic("PANIC: scheduler::system_initialized called"
"more than once");
}
_initialized = true;
}
#endif