2012-07-03 20:19:36 -03:00
|
|
|
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
/*
|
|
|
|
* location.cpp
|
|
|
|
* Copyright (C) Andrew Tridgell 2011
|
|
|
|
*
|
|
|
|
* This file is free software: you can redistribute it and/or modify it
|
|
|
|
* under the terms of the GNU General Public License as published by the
|
|
|
|
* Free Software Foundation, either version 3 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This file is distributed in the hope that it will be useful, but
|
|
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
|
|
* See the GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License along
|
|
|
|
* with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
2012-08-17 03:20:14 -03:00
|
|
|
* this module deals with calculations involving struct Location
|
2012-07-03 20:19:36 -03:00
|
|
|
*/
|
2015-08-11 03:28:44 -03:00
|
|
|
#include <AP_HAL/AP_HAL.h>
|
2012-09-18 15:08:18 -03:00
|
|
|
#include <stdlib.h>
|
2012-07-03 20:19:36 -03:00
|
|
|
#include "AP_Math.h"
|
2016-02-25 08:07:27 -04:00
|
|
|
#include "location.h"
|
2012-07-03 20:19:36 -03:00
|
|
|
|
2013-08-12 00:14:23 -03:00
|
|
|
// scaling factor from 1e-7 degrees to meters at equater
|
|
|
|
// == 1.0e-7 * DEG_TO_RAD * RADIUS_OF_EARTH
|
|
|
|
#define LOCATION_SCALING_FACTOR 0.011131884502145034f
|
|
|
|
// inverse of LOCATION_SCALING_FACTOR
|
|
|
|
#define LOCATION_SCALING_FACTOR_INV 89.83204953368922f
|
|
|
|
|
2013-08-04 21:14:33 -03:00
|
|
|
float longitude_scale(const struct Location &loc)
|
2012-07-03 20:19:36 -03:00
|
|
|
{
|
2015-07-05 19:19:57 -03:00
|
|
|
#if HAL_CPU_CLASS < HAL_CPU_CLASS_150
|
2012-08-17 03:20:14 -03:00
|
|
|
static int32_t last_lat;
|
|
|
|
static float scale = 1.0;
|
2015-07-05 04:27:53 -03:00
|
|
|
// don't optimise on faster CPUs. It causes some minor errors on Replay
|
2013-08-04 21:14:33 -03:00
|
|
|
if (labs(last_lat - loc.lat) < 100000) {
|
2012-08-17 03:20:14 -03:00
|
|
|
// we are within 0.01 degrees (about 1km) of the
|
|
|
|
// same latitude. We can avoid the cos() and return
|
|
|
|
// the same scale factor.
|
|
|
|
return scale;
|
|
|
|
}
|
2013-08-12 00:14:23 -03:00
|
|
|
scale = cosf(loc.lat * 1.0e-7f * DEG_TO_RAD);
|
2014-08-06 20:30:02 -03:00
|
|
|
scale = constrain_float(scale, 0.01f, 1.0f);
|
2013-08-04 21:14:33 -03:00
|
|
|
last_lat = loc.lat;
|
2012-08-17 03:20:14 -03:00
|
|
|
return scale;
|
2015-07-05 19:19:57 -03:00
|
|
|
#else
|
|
|
|
float scale = cosf(loc.lat * 1.0e-7f * DEG_TO_RAD);
|
|
|
|
return constrain_float(scale, 0.01f, 1.0f);
|
|
|
|
#endif
|
2012-07-03 20:19:36 -03:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
2013-04-11 09:15:49 -03:00
|
|
|
// return distance in meters between two locations
|
2013-08-04 21:14:33 -03:00
|
|
|
float get_distance(const struct Location &loc1, const struct Location &loc2)
|
2012-07-03 20:19:36 -03:00
|
|
|
{
|
2013-08-04 21:14:33 -03:00
|
|
|
float dlat = (float)(loc2.lat - loc1.lat);
|
|
|
|
float dlong = ((float)(loc2.lng - loc1.lng)) * longitude_scale(loc2);
|
2013-08-12 00:14:23 -03:00
|
|
|
return pythagorous2(dlat, dlong) * LOCATION_SCALING_FACTOR;
|
2012-07-03 20:19:36 -03:00
|
|
|
}
|
|
|
|
|
2013-01-26 04:04:12 -04:00
|
|
|
// return distance in centimeters to between two locations
|
2013-08-04 21:14:33 -03:00
|
|
|
uint32_t get_distance_cm(const struct Location &loc1, const struct Location &loc2)
|
2012-07-10 18:49:05 -03:00
|
|
|
{
|
|
|
|
return get_distance(loc1, loc2) * 100;
|
|
|
|
}
|
|
|
|
|
2012-07-03 20:19:36 -03:00
|
|
|
// return bearing in centi-degrees between two locations
|
2013-08-04 21:14:33 -03:00
|
|
|
int32_t get_bearing_cd(const struct Location &loc1, const struct Location &loc2)
|
2012-07-03 20:19:36 -03:00
|
|
|
{
|
2013-08-04 21:14:33 -03:00
|
|
|
int32_t off_x = loc2.lng - loc1.lng;
|
|
|
|
int32_t off_y = (loc2.lat - loc1.lat) / longitude_scale(loc2);
|
2013-01-10 14:42:24 -04:00
|
|
|
int32_t bearing = 9000 + atan2f(-off_y, off_x) * 5729.57795f;
|
2012-08-17 03:20:14 -03:00
|
|
|
if (bearing < 0) bearing += 36000;
|
|
|
|
return bearing;
|
2012-07-03 20:19:36 -03:00
|
|
|
}
|
|
|
|
|
2012-08-16 01:36:55 -03:00
|
|
|
// see if location is past a line perpendicular to
|
|
|
|
// the line between point1 and point2. If point1 is
|
2012-07-03 20:19:36 -03:00
|
|
|
// our previous waypoint and point2 is our target waypoint
|
|
|
|
// then this function returns true if we have flown past
|
|
|
|
// the target waypoint
|
2013-03-26 08:58:54 -03:00
|
|
|
bool location_passed_point(const struct Location &location,
|
|
|
|
const struct Location &point1,
|
|
|
|
const struct Location &point2)
|
2012-07-03 20:19:36 -03:00
|
|
|
{
|
2015-01-02 19:35:55 -04:00
|
|
|
return location_path_proportion(location, point1, point2) >= 1.0f;
|
2012-07-03 20:19:36 -03:00
|
|
|
}
|
|
|
|
|
2015-01-01 00:17:10 -04:00
|
|
|
|
|
|
|
/*
|
|
|
|
return the proportion we are along the path from point1 to
|
|
|
|
point2, along a line parallel to point1<->point2.
|
|
|
|
|
|
|
|
This will be less than >1 if we have passed point2
|
|
|
|
*/
|
|
|
|
float location_path_proportion(const struct Location &location,
|
|
|
|
const struct Location &point1,
|
|
|
|
const struct Location &point2)
|
|
|
|
{
|
2015-01-02 19:35:55 -04:00
|
|
|
Vector2f vec1 = location_diff(point1, point2);
|
|
|
|
Vector2f vec2 = location_diff(point1, location);
|
|
|
|
float dsquared = sq(vec1.x) + sq(vec1.y);
|
|
|
|
if (dsquared < 0.001f) {
|
|
|
|
// the two points are very close together
|
2015-01-01 00:17:10 -04:00
|
|
|
return 1.0f;
|
|
|
|
}
|
2015-01-02 19:35:55 -04:00
|
|
|
return (vec1 * vec2) / dsquared;
|
2015-01-01 00:17:10 -04:00
|
|
|
}
|
|
|
|
|
2012-08-10 22:56:54 -03:00
|
|
|
/*
|
2012-08-17 03:20:14 -03:00
|
|
|
* extrapolate latitude/longitude given bearing and distance
|
2013-08-12 00:14:23 -03:00
|
|
|
* Note that this function is accurate to about 1mm at a distance of
|
|
|
|
* 100m. This function has the advantage that it works in relative
|
|
|
|
* positions, so it keeps the accuracy even when dealing with small
|
|
|
|
* distances and floating point numbers
|
2012-08-17 03:20:14 -03:00
|
|
|
*/
|
2013-08-04 21:14:33 -03:00
|
|
|
void location_update(struct Location &loc, float bearing, float distance)
|
2012-08-10 22:56:54 -03:00
|
|
|
{
|
2013-08-12 00:14:23 -03:00
|
|
|
float ofs_north = cosf(radians(bearing))*distance;
|
|
|
|
float ofs_east = sinf(radians(bearing))*distance;
|
|
|
|
location_offset(loc, ofs_north, ofs_east);
|
2012-08-10 22:56:54 -03:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2012-08-17 03:20:14 -03:00
|
|
|
* extrapolate latitude/longitude given distances north and east
|
|
|
|
*/
|
2013-08-04 21:14:33 -03:00
|
|
|
void location_offset(struct Location &loc, float ofs_north, float ofs_east)
|
2012-08-10 22:56:54 -03:00
|
|
|
{
|
2015-05-04 23:35:31 -03:00
|
|
|
if (!is_zero(ofs_north) || !is_zero(ofs_east)) {
|
2013-09-15 22:38:55 -03:00
|
|
|
int32_t dlat = ofs_north * LOCATION_SCALING_FACTOR_INV;
|
|
|
|
int32_t dlng = (ofs_east * LOCATION_SCALING_FACTOR_INV) / longitude_scale(loc);
|
2013-08-04 21:14:33 -03:00
|
|
|
loc.lat += dlat;
|
|
|
|
loc.lng += dlng;
|
2012-08-10 22:56:54 -03:00
|
|
|
}
|
|
|
|
}
|
2013-03-28 23:13:37 -03:00
|
|
|
|
2013-08-12 00:14:23 -03:00
|
|
|
/*
|
|
|
|
return the distance in meters in North/East plane as a N/E vector
|
|
|
|
from loc1 to loc2
|
|
|
|
*/
|
|
|
|
Vector2f location_diff(const struct Location &loc1, const struct Location &loc2)
|
|
|
|
{
|
|
|
|
return Vector2f((loc2.lat - loc1.lat) * LOCATION_SCALING_FACTOR,
|
|
|
|
(loc2.lng - loc1.lng) * LOCATION_SCALING_FACTOR * longitude_scale(loc1));
|
|
|
|
}
|
|
|
|
|
2013-03-28 23:13:37 -03:00
|
|
|
/*
|
2014-02-03 00:28:48 -04:00
|
|
|
wrap an angle in centi-degrees to 0..35999
|
2013-03-28 23:13:37 -03:00
|
|
|
*/
|
|
|
|
int32_t wrap_360_cd(int32_t error)
|
|
|
|
{
|
2013-10-02 03:08:13 -03:00
|
|
|
if (error > 360000 || error < -360000) {
|
|
|
|
// for very large numbers use modulus
|
|
|
|
error = error % 36000;
|
|
|
|
}
|
2014-02-02 23:56:56 -04:00
|
|
|
while (error >= 36000) error -= 36000;
|
|
|
|
while (error < 0) error += 36000;
|
2013-03-28 23:13:37 -03:00
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
wrap an angle in centi-degrees to -18000..18000
|
|
|
|
*/
|
|
|
|
int32_t wrap_180_cd(int32_t error)
|
|
|
|
{
|
2013-10-02 03:08:13 -03:00
|
|
|
if (error > 360000 || error < -360000) {
|
|
|
|
// for very large numbers use modulus
|
|
|
|
error = error % 36000;
|
|
|
|
}
|
2014-02-02 23:56:56 -04:00
|
|
|
while (error > 18000) { error -= 36000; }
|
|
|
|
while (error < -18000) { error += 36000; }
|
2013-03-28 23:13:37 -03:00
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
2014-02-03 00:28:48 -04:00
|
|
|
/*
|
|
|
|
wrap an angle in centi-degrees to 0..35999
|
|
|
|
*/
|
|
|
|
float wrap_360_cd_float(float angle)
|
|
|
|
{
|
|
|
|
if (angle >= 72000.0f || angle < -36000.0f) {
|
|
|
|
// for larger number use fmodulus
|
|
|
|
angle = fmod(angle, 36000.0f);
|
|
|
|
}
|
|
|
|
if (angle >= 36000.0f) angle -= 36000.0f;
|
|
|
|
if (angle < 0.0f) angle += 36000.0f;
|
|
|
|
return angle;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
wrap an angle in centi-degrees to -18000..18000
|
|
|
|
*/
|
|
|
|
float wrap_180_cd_float(float angle)
|
|
|
|
{
|
|
|
|
if (angle > 54000.0f || angle < -54000.0f) {
|
|
|
|
// for large numbers use modulus
|
|
|
|
angle = fmod(angle,36000.0f);
|
|
|
|
}
|
|
|
|
if (angle > 18000.0f) { angle -= 36000.0f; }
|
|
|
|
if (angle < -18000.0f) { angle += 36000.0f; }
|
|
|
|
return angle;
|
|
|
|
}
|
|
|
|
|
2013-06-01 05:18:50 -03:00
|
|
|
/*
|
|
|
|
wrap an angle defined in radians to -PI ~ PI (equivalent to +- 180 degrees)
|
|
|
|
*/
|
|
|
|
float wrap_PI(float angle_in_radians)
|
|
|
|
{
|
2016-02-25 13:13:02 -04:00
|
|
|
if (angle_in_radians > 10*M_PI || angle_in_radians < -10*M_PI) {
|
2013-10-02 03:08:13 -03:00
|
|
|
// for very large numbers use modulus
|
2016-02-25 13:13:02 -04:00
|
|
|
angle_in_radians = fmodf(angle_in_radians, 2*M_PI);
|
2013-10-02 03:08:13 -03:00
|
|
|
}
|
2016-02-25 13:13:02 -04:00
|
|
|
while (angle_in_radians > M_PI) angle_in_radians -= 2*M_PI;
|
|
|
|
while (angle_in_radians < -M_PI) angle_in_radians += 2*M_PI;
|
2013-06-01 05:18:50 -03:00
|
|
|
return angle_in_radians;
|
|
|
|
}
|
2013-04-19 20:49:58 -03:00
|
|
|
|
2015-11-24 17:11:34 -04:00
|
|
|
/*
|
|
|
|
* wrap an angle in radians to 0..2PI
|
|
|
|
*/
|
|
|
|
float wrap_2PI(float angle)
|
|
|
|
{
|
2016-02-25 13:13:02 -04:00
|
|
|
if (angle > 10*M_PI || angle < -10*M_PI) {
|
2015-11-24 17:11:34 -04:00
|
|
|
// for very large numbers use modulus
|
2016-02-25 13:13:02 -04:00
|
|
|
angle = fmodf(angle, 2*M_PI);
|
2015-11-24 17:11:34 -04:00
|
|
|
}
|
2016-02-25 13:13:02 -04:00
|
|
|
while (angle > 2*M_PI) angle -= 2*M_PI;
|
|
|
|
while (angle < 0) angle += 2*M_PI;
|
2015-11-24 17:11:34 -04:00
|
|
|
return angle;
|
|
|
|
}
|
|
|
|
|
2015-08-24 18:52:27 -03:00
|
|
|
/*
|
|
|
|
return true if lat and lng match. Ignores altitude and options
|
|
|
|
*/
|
|
|
|
bool locations_are_same(const struct Location &loc1, const struct Location &loc2) {
|
|
|
|
return (loc1.lat == loc2.lat) && (loc1.lng == loc2.lng);
|
|
|
|
}
|
|
|
|
|
2016-03-02 12:43:18 -04:00
|
|
|
/*
|
|
|
|
* convert invalid waypoint with useful data. return true if location changed
|
|
|
|
*/
|
|
|
|
bool location_sanitize(const struct Location &defaultLoc, struct Location &loc)
|
|
|
|
{
|
|
|
|
bool has_changed = false;
|
|
|
|
// convert lat/lng=0 to mean current point
|
|
|
|
if (loc.lat == 0 && loc.lng == 0) {
|
|
|
|
loc.lat = defaultLoc.lat;
|
|
|
|
loc.lng = defaultLoc.lng;
|
|
|
|
has_changed = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// convert relative alt=0 to mean current alt
|
|
|
|
if (loc.alt == 0 && loc.flags.relative_alt) {
|
|
|
|
loc.flags.relative_alt = false;
|
|
|
|
loc.alt = defaultLoc.alt;
|
|
|
|
has_changed = true;
|
|
|
|
}
|
2016-04-11 18:06:03 -03:00
|
|
|
|
|
|
|
// limit lat/lng to appropriate ranges
|
|
|
|
if (abs(loc.lat) > 90 * 1e7 || abs(loc.lng) > 180 * 1e7) {
|
|
|
|
loc.lat = defaultLoc.lat;
|
|
|
|
loc.lng = defaultLoc.lng;
|
|
|
|
has_changed = true;
|
|
|
|
}
|
|
|
|
|
2016-03-02 12:43:18 -04:00
|
|
|
return has_changed;
|
|
|
|
}
|
|
|
|
|
2013-04-19 20:49:58 -03:00
|
|
|
/*
|
|
|
|
print a int32_t lat/long in decimal degrees
|
|
|
|
*/
|
|
|
|
void print_latlon(AP_HAL::BetterStream *s, int32_t lat_or_lon)
|
|
|
|
{
|
|
|
|
int32_t dec_portion, frac_portion;
|
|
|
|
int32_t abs_lat_or_lon = labs(lat_or_lon);
|
|
|
|
|
|
|
|
// extract decimal portion (special handling of negative numbers to ensure we round towards zero)
|
|
|
|
dec_portion = abs_lat_or_lon / 10000000UL;
|
|
|
|
|
|
|
|
// extract fractional portion
|
|
|
|
frac_portion = abs_lat_or_lon - dec_portion*10000000UL;
|
|
|
|
|
|
|
|
// print output including the minus sign
|
|
|
|
if( lat_or_lon < 0 ) {
|
2015-10-25 17:10:41 -03:00
|
|
|
s->printf("-");
|
2013-04-19 20:49:58 -03:00
|
|
|
}
|
2015-10-25 17:10:41 -03:00
|
|
|
s->printf("%ld.%07ld",(long)dec_portion,(long)frac_portion);
|
2013-04-19 20:49:58 -03:00
|
|
|
}
|
2014-04-03 19:44:56 -03:00
|
|
|
|
|
|
|
void wgsllh2ecef(const Vector3d &llh, Vector3d &ecef) {
|
|
|
|
double d = WGS84_E * sin(llh[0]);
|
|
|
|
double N = WGS84_A / sqrt(1. - d*d);
|
|
|
|
|
|
|
|
ecef[0] = (N + llh[2]) * cos(llh[0]) * cos(llh[1]);
|
|
|
|
ecef[1] = (N + llh[2]) * cos(llh[0]) * sin(llh[1]);
|
|
|
|
ecef[2] = ((1 - WGS84_E*WGS84_E)*N + llh[2]) * sin(llh[0]);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void wgsecef2llh(const Vector3d &ecef, Vector3d &llh) {
|
|
|
|
/* Distance from polar axis. */
|
|
|
|
const double p = sqrt(ecef[0]*ecef[0] + ecef[1]*ecef[1]);
|
|
|
|
|
|
|
|
/* Compute longitude first, this can be done exactly. */
|
2015-05-04 23:35:31 -03:00
|
|
|
if (!is_zero(p))
|
2014-04-03 19:44:56 -03:00
|
|
|
llh[1] = atan2(ecef[1], ecef[0]);
|
|
|
|
else
|
|
|
|
llh[1] = 0;
|
|
|
|
|
|
|
|
/* If we are close to the pole then convergence is very slow, treat this is a
|
|
|
|
* special case. */
|
|
|
|
if (p < WGS84_A*1e-16) {
|
|
|
|
llh[0] = copysign(M_PI_2, ecef[2]);
|
|
|
|
llh[2] = fabs(ecef[2]) - WGS84_B;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Caluclate some other constants as defined in the Fukushima paper. */
|
|
|
|
const double P = p / WGS84_A;
|
|
|
|
const double e_c = sqrt(1. - WGS84_E*WGS84_E);
|
|
|
|
const double Z = fabs(ecef[2]) * e_c / WGS84_A;
|
|
|
|
|
|
|
|
/* Initial values for S and C correspond to a zero height solution. */
|
|
|
|
double S = Z;
|
|
|
|
double C = e_c * P;
|
|
|
|
|
|
|
|
/* Neither S nor C can be negative on the first iteration so
|
|
|
|
* starting prev = -1 will not cause and early exit. */
|
|
|
|
double prev_C = -1;
|
|
|
|
double prev_S = -1;
|
|
|
|
|
|
|
|
double A_n, B_n, D_n, F_n;
|
|
|
|
|
|
|
|
/* Iterate a maximum of 10 times. This should be way more than enough for all
|
|
|
|
* sane inputs */
|
|
|
|
for (int i=0; i<10; i++)
|
|
|
|
{
|
|
|
|
/* Calculate some intermmediate variables used in the update step based on
|
|
|
|
* the current state. */
|
|
|
|
A_n = sqrt(S*S + C*C);
|
|
|
|
D_n = Z*A_n*A_n*A_n + WGS84_E*WGS84_E*S*S*S;
|
|
|
|
F_n = P*A_n*A_n*A_n - WGS84_E*WGS84_E*C*C*C;
|
|
|
|
B_n = 1.5*WGS84_E*S*C*C*(A_n*(P*S - Z*C) - WGS84_E*S*C);
|
|
|
|
|
|
|
|
/* Update step. */
|
|
|
|
S = D_n*F_n - B_n*S;
|
|
|
|
C = F_n*F_n - B_n*C;
|
|
|
|
|
|
|
|
/* The original algorithm as presented in the paper by Fukushima has a
|
|
|
|
* problem with numerical stability. S and C can grow very large or small
|
|
|
|
* and over or underflow a double. In the paper this is acknowledged and
|
|
|
|
* the proposed resolution is to non-dimensionalise the equations for S and
|
|
|
|
* C. However, this does not completely solve the problem. The author caps
|
|
|
|
* the solution to only a couple of iterations and in this period over or
|
|
|
|
* underflow is unlikely but as we require a bit more precision and hence
|
|
|
|
* more iterations so this is still a concern for us.
|
|
|
|
*
|
|
|
|
* As the only thing that is important is the ratio T = S/C, my solution is
|
|
|
|
* to divide both S and C by either S or C. The scaling is chosen such that
|
|
|
|
* one of S or C is scaled to unity whilst the other is scaled to a value
|
|
|
|
* less than one. By dividing by the larger of S or C we ensure that we do
|
|
|
|
* not divide by zero as only one of S or C should ever be zero.
|
|
|
|
*
|
|
|
|
* This incurs an extra division each iteration which the author was
|
|
|
|
* explicityl trying to avoid and it may be that this solution is just
|
|
|
|
* reverting back to the method of iterating on T directly, perhaps this
|
|
|
|
* bears more thought?
|
|
|
|
*/
|
|
|
|
|
|
|
|
if (S > C) {
|
|
|
|
C = C / S;
|
|
|
|
S = 1;
|
|
|
|
} else {
|
|
|
|
S = S / C;
|
|
|
|
C = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Check for convergence and exit early if we have converged. */
|
|
|
|
if (fabs(S - prev_S) < 1e-16 && fabs(C - prev_C) < 1e-16) {
|
|
|
|
break;
|
|
|
|
} else {
|
|
|
|
prev_S = S;
|
|
|
|
prev_C = C;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
A_n = sqrt(S*S + C*C);
|
|
|
|
llh[0] = copysign(1.0, ecef[2]) * atan(S / (e_c*C));
|
|
|
|
llh[2] = (p*e_c*C + fabs(ecef[2])*S - WGS84_A*e_c*A_n) / sqrt(e_c*e_c*C*C + S*S);
|
|
|
|
}
|