ardupilot/Blimp/system.cpp

340 lines
10 KiB
C++
Raw Normal View History

#include "Blimp.h"
/*****************************************************************************
* The init_ardupilot function processes everything we need for an in - air restart
* We will determine later if we are actually on the ground and process a
* ground start in that case.
*
*****************************************************************************/
static void failsafe_check_static()
{
blimp.failsafe_check();
}
void Blimp::init_ardupilot()
{
#if STATS_ENABLED == ENABLED
// initialise stats module
g2.stats.init();
#endif
BoardConfig.init();
// initialise notify system
notify.init();
notify_flight_mode();
// initialise battery monitor
battery.init();
// Init RSSI
rssi.init();
barometer.init();
// setup telem slots with serial ports
gcs().setup_uarts();
#if LOGGING_ENABLED == ENABLED
log_init();
#endif
init_rc_in(); // sets up rc channels from radio
// allocate the motors class
allocate_motors();
// initialise rc channels including setting mode
rc().init();
// sets up motors and output to escs
init_rc_out();
// motors initialised so parameters can be sent
ap.initialised_params = true;
relay.init();
/*
* setup the 'main loop is dead' check. Note that this relies on
* the RC library being initialised.
*/
hal.scheduler->register_timer_failsafe(failsafe_check_static, 1000);
// Do GPS init
gps.set_log_gps_bit(MASK_LOG_GPS);
gps.init(serial_manager);
AP::compass().set_log_bit(MASK_LOG_COMPASS);
AP::compass().init();
// attitude_control->parameter_sanity_check();
// pos_control->set_dt(scheduler.get_loop_period_s());
#if HIL_MODE != HIL_MODE_DISABLED
while (barometer.get_last_update() == 0) {
// the barometer begins updating when we get the first
// HIL_STATE message
gcs().send_text(MAV_SEVERITY_WARNING, "Waiting for first HIL_STATE message");
delay(1000);
}
// set INS to HIL mode
ins.set_hil_mode();
#endif
// read Baro pressure at ground
//-----------------------------
barometer.set_log_baro_bit(MASK_LOG_IMU);
barometer.calibrate();
// #if MODE_AUTO_ENABLED == ENABLED
// // initialise mission library
// mode_auto.mission.init();
// #endif
// initialise AP_Logger library
logger.setVehicle_Startup_Writer(FUNCTOR_BIND(&blimp, &Blimp::Log_Write_Vehicle_Startup_Messages, void));
startup_INS_ground();
#ifdef ENABLE_SCRIPTING
g2.scripting.init();
#endif // ENABLE_SCRIPTING
// set landed flags
// set_land_complete(true);
// set_land_complete_maybe(true);
// we don't want writes to the serial port to cause us to pause
// mid-flight, so set the serial ports non-blocking once we are
// ready to fly
serial_manager.set_blocking_writes_all(false);
// enable CPU failsafe
// failsafe_enable();
ins.set_log_raw_bit(MASK_LOG_IMU_RAW);
// setup fin output
motors->setup_fins();
// enable output to motors
if (arming.rc_calibration_checks(true)) {
enable_motor_output();
}
// attempt to switch to MANUAL, if this fails then switch to Land
if (!set_mode((enum Mode::Number)g.initial_mode.get(), ModeReason::INITIALISED)) {
// set mode to MANUAL will trigger mode change notification to pilot
set_mode(Mode::Number::MANUAL, ModeReason::UNAVAILABLE);
} else {
// alert pilot to mode change
AP_Notify::events.failsafe_mode_change = 1;
}
// flag that initialisation has completed
ap.initialised = true;
}
//******************************************************************************
//This function does all the calibrations, etc. that we need during a ground start
//******************************************************************************
void Blimp::startup_INS_ground()
{
// initialise ahrs (may push imu calibration into the mpu6000 if using that device).
ahrs.init();
ahrs.set_vehicle_class(AHRS_VEHICLE_COPTER);
// Warm up and calibrate gyro offsets
ins.init(scheduler.get_loop_rate_hz());
// reset ahrs including gyro bias
ahrs.reset();
}
// position_ok - returns true if the horizontal absolute position is ok and home position is set
bool Blimp::position_ok() const
{
// return false if ekf failsafe has triggered
if (failsafe.ekf) {
return false;
}
// check ekf position estimate
return (ekf_has_absolute_position() || ekf_has_relative_position());
}
// ekf_has_absolute_position - returns true if the EKF can provide an absolute WGS-84 position estimate
bool Blimp::ekf_has_absolute_position() const
{
if (!ahrs.have_inertial_nav()) {
// do not allow navigation with dcm position
return false;
}
// with EKF use filter status and ekf check
nav_filter_status filt_status = inertial_nav.get_filter_status();
// if disarmed we accept a predicted horizontal position
if (!motors->armed()) {
return ((filt_status.flags.horiz_pos_abs || filt_status.flags.pred_horiz_pos_abs));
} else {
// once armed we require a good absolute position and EKF must not be in const_pos_mode
return (filt_status.flags.horiz_pos_abs && !filt_status.flags.const_pos_mode);
}
}
// ekf_has_relative_position - returns true if the EKF can provide a position estimate relative to it's starting position
bool Blimp::ekf_has_relative_position() const
{
// return immediately if EKF not used
if (!ahrs.have_inertial_nav()) {
return false;
}
// return immediately if neither optflow nor visual odometry is enabled
bool enabled = false;
// #if OPTFLOW == ENABLED
// if (optflow.enabled()) {
// enabled = true;
// }
// #endif
// #if HAL_VISUALODOM_ENABLED
// if (visual_odom.enabled()) {
// enabled = true;
// }
// #endif
if (!enabled) {
return false;
}
// get filter status from EKF
nav_filter_status filt_status = inertial_nav.get_filter_status();
// if disarmed we accept a predicted horizontal relative position
if (!motors->armed()) {
return (filt_status.flags.pred_horiz_pos_rel);
} else {
return (filt_status.flags.horiz_pos_rel && !filt_status.flags.const_pos_mode);
}
}
// returns true if the ekf has a good altitude estimate (required for modes which do AltHold)
bool Blimp::ekf_alt_ok() const
{
if (!ahrs.have_inertial_nav()) {
// do not allow alt control with only dcm
return false;
}
// with EKF use filter status and ekf check
nav_filter_status filt_status = inertial_nav.get_filter_status();
// require both vertical velocity and position
return (filt_status.flags.vert_vel && filt_status.flags.vert_pos);
}
// update_auto_armed - update status of auto_armed flag
void Blimp::update_auto_armed()
{
// disarm checks
if (ap.auto_armed) {
// if motors are disarmed, auto_armed should also be false
if (!motors->armed()) {
set_auto_armed(false);
return;
}
// if in stabilize or acro flight mode and throttle is zero, auto-armed should become false
if (flightmode->has_manual_throttle() && ap.throttle_zero && !failsafe.radio) {
set_auto_armed(false);
}
// if heliblimps are on the ground, and the motor is switched off, auto-armed should be false
// so that rotor runup is checked again before attempting to take-off
if (ap.land_complete && motors->get_spool_state() != Fins::SpoolState::THROTTLE_UNLIMITED && ap.using_interlock) {
set_auto_armed(false);
}
}
}
/*
should we log a message type now?
*/
bool Blimp::should_log(uint32_t mask)
{
#if LOGGING_ENABLED == ENABLED
ap.logging_started = logger.logging_started();
return logger.should_log(mask);
#else
return false;
#endif
}
// return MAV_TYPE corresponding to frame class
MAV_TYPE Blimp::get_frame_mav_type()
{
return MAV_TYPE_QUADROTOR; //TODO: Mavlink changes to allow type to be correct
}
// return string corresponding to frame_class
const char* Blimp::get_frame_string()
{
return "AIRFISH"; //TODO: Change to be able to change with different frame_classes
}
/*
allocate the motors class
*/
void Blimp::allocate_motors(void)
{
switch ((Fins::motor_frame_class)g2.frame_class.get()) {
case Fins::MOTOR_FRAME_AIRFISH:
default:
motors = new Fins(blimp.scheduler.get_loop_rate_hz());
break;
}
if (motors == nullptr) {
AP_HAL::panic("Unable to allocate FRAME_CLASS=%u", (unsigned)g2.frame_class.get());
}
AP_Param::load_object_from_eeprom(motors, Fins::var_info);
// const struct AP_Param::GroupInfo *ac_var_info;
// attitude_control = new AC_AttitudeControl_Multi(*ahrs_view, aparm, *motors, scheduler.get_loop_period_s());
// ac_var_info = AC_AttitudeControl_Multi::var_info;
// if (attitude_control == nullptr) {
// AP_HAL::panic("Unable to allocate AttitudeControl");
// }
// AP_Param::load_object_from_eeprom(attitude_control, ac_var_info);
// pos_control = new AC_PosControl(*ahrs_view, inertial_nav, *motors, *attitude_control);
// if (pos_control == nullptr) {
// AP_HAL::panic("Unable to allocate PosControl");
// }
// AP_Param::load_object_from_eeprom(pos_control, pos_control->var_info);
// wp_nav = new AC_WPNav(inertial_nav, *ahrs_view, *pos_control, *attitude_control);
// if (wp_nav == nullptr) {
// AP_HAL::panic("Unable to allocate WPNav");
// }
// AP_Param::load_object_from_eeprom(wp_nav, wp_nav->var_info);
// loiter_nav = new AC_Loiter(inertial_nav, *ahrs_view, *pos_control, *attitude_control);
// if (loiter_nav == nullptr) {
// AP_HAL::panic("Unable to allocate LoiterNav");
// }
// AP_Param::load_object_from_eeprom(loiter_nav, loiter_nav->var_info);
// reload lines from the defaults file that may now be accessible
AP_Param::reload_defaults_file(true);
// param count could have changed
AP_Param::invalidate_count();
}