2019-08-15 05:23:36 -03:00
|
|
|
/*
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
|
2019-07-10 19:15:58 -03:00
|
|
|
#include <AP_HAL/AP_HAL.h>
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
|
|
#include "AP_Proximity_AirSimSITL.h"
|
|
|
|
#include <stdio.h>
|
|
|
|
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
|
|
|
|
#define PROXIMITY_MAX_RANGE 100.0f
|
|
|
|
#define PROXIMITY_ACCURACY 0.1f
|
|
|
|
|
|
|
|
/*
|
|
|
|
The constructor also initialises the proximity sensor.
|
|
|
|
*/
|
|
|
|
AP_Proximity_AirSimSITL::AP_Proximity_AirSimSITL(AP_Proximity &_frontend,
|
|
|
|
AP_Proximity::Proximity_State &_state):
|
|
|
|
AP_Proximity_Backend(_frontend, _state),
|
|
|
|
sitl(AP::sitl())
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
// update the state of the sensor
|
|
|
|
void AP_Proximity_AirSimSITL::update(void)
|
|
|
|
{
|
|
|
|
SITL::vector3f_array &points = sitl->state.scanner.points;
|
|
|
|
if (points.length == 0) {
|
2019-09-27 05:58:52 -03:00
|
|
|
set_status(AP_Proximity::Status::NoData);
|
2019-07-10 19:15:58 -03:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2019-09-27 05:58:52 -03:00
|
|
|
set_status(AP_Proximity::Status::Good);
|
2019-07-10 19:15:58 -03:00
|
|
|
|
|
|
|
memset(_distance_valid, 0, sizeof(_distance_valid));
|
|
|
|
memset(_angle, 0, sizeof(_angle));
|
|
|
|
memset(_distance, 0, sizeof(_distance));
|
|
|
|
|
|
|
|
// only use 8 sectors to match RPLidar
|
|
|
|
const uint8_t nsectors = MIN(8, PROXIMITY_SECTORS_MAX);
|
|
|
|
const uint16_t degrees_per_sector = 360 / nsectors;
|
|
|
|
|
|
|
|
for (uint16_t i=0; i<points.length; i++) {
|
|
|
|
Vector3f &point = points.data[i];
|
|
|
|
if (point.is_zero()) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
float angle_deg = wrap_360(degrees(atan2f(-point.y, point.x)));
|
|
|
|
uint16_t angle_rounded = uint16_t(angle_deg+0.5);
|
|
|
|
uint8_t sector = wrap_360(angle_rounded + 22.5f) / degrees_per_sector;
|
|
|
|
if (!_distance_valid[sector] || PROXIMITY_MAX_RANGE < _distance[sector]) {
|
|
|
|
_distance_valid[sector] = true;
|
|
|
|
const Vector2f v = Vector2f(point.x, point.y);
|
|
|
|
_distance[sector] = v.length();
|
|
|
|
_angle[sector] = angle_deg;
|
|
|
|
update_boundary_for_sector(sector, true);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
printf("npoints=%u\n", points.length);
|
|
|
|
for (uint16_t i=0; i<nsectors; i++) {
|
|
|
|
printf("sector[%u] ang=%.1f dist=%.1f\n", i, _angle[i], _distance[i]);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
// get maximum and minimum distances (in meters) of primary sensor
|
|
|
|
float AP_Proximity_AirSimSITL::distance_max() const
|
|
|
|
{
|
|
|
|
return PROXIMITY_MAX_RANGE;
|
|
|
|
}
|
|
|
|
|
|
|
|
float AP_Proximity_AirSimSITL::distance_min() const
|
|
|
|
{
|
|
|
|
return 0.0f;
|
|
|
|
}
|
|
|
|
|
|
|
|
// get distance upwards in meters. returns true on success
|
|
|
|
bool AP_Proximity_AirSimSITL::get_upward_distance(float &distance) const
|
|
|
|
{
|
|
|
|
// we don't have an upward facing laser
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // CONFIG_HAL_BOARD
|