ardupilot/libraries/AP_HAL_F4Light/wirish/boards.cpp

332 lines
9.2 KiB
C++
Raw Normal View History

/******************************************************************************
* The MIT License
*
(c) 2017 night_ghost@ykoctpa.ru
based on:
* Copyright (c) 2010 Perry Hung.
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy,
* modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*****************************************************************************/
/**
* @brief Generic board initialization routines.
*
*/
#pragma GCC optimize ("O2")
#include "boards.h"
#include <usb.h>
static void setupNVIC(void);
static void enableFPU(void);
static void setupCCM(void);
void setupADC(void);
void setupTimers(void);
void usb_init(void);
void usb_init(void){
usb_attr_t usb_attr;
usb_open();
usb_default_attr(&usb_attr);
usb_attr.preempt_prio = USB_INT_PRIORITY;
usb_attr.sub_prio = 0;
usb_attr.use_present_pin = 1;
usb_attr.present_port = PIN_MAP[BOARD_USB_SENSE].gpio_device;
usb_attr.present_pin = PIN_MAP[BOARD_USB_SENSE].gpio_bit;
usb_configure(&usb_attr);
}
static INLINE void enableFPU(void){
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
SCB->CPACR |= ((3UL << 10*2)|(3UL << 11*2)); // set CP10 and CP11 Full Access
/*
FPU_FPCCR_ASPEN_Msk
FPU_FPCCR_LSPEN_Msk
*/
#endif
}
static INLINE void setupCCM(){
extern unsigned _sccm,_eccm; // defined by link script
/* enabled by startup code
RCC->AHB1ENR |= RCC_AHB1ENR_CCMDATARAMEN;
asm volatile("dsb \n");
*/
// volatile unsigned *src = &_siccm; // CCM initializers in flash
volatile unsigned *dest = &_sccm; // start of CCM
#if 0 // no support for initialized data in CCM
while (dest < &_eccm) {
*dest++ = *src++;
}
#endif
while (dest < &_eccm) {
*dest++ = 0;
}
// only for stack debugging
#if 0
uint32_t sp;
// Get stack pointer
asm volatile ("mov %0, sp\n\t" : "=rm" (sp) );
#if 0 // memset is much faster but uses too much stack for own needs
memset((void *)dest,0x55, (sp-(uint32_t)dest) -128);
#else
while ((uint32_t)dest < (sp-8)) {
*dest++ = 0x55555555; // fill stack to check it's usage
}
#endif
#endif
}
static INLINE void setupNVIC()
{
/* 4 bit preemption, 0 bit subpriority */
NVIC_PriorityGroupConfig( NVIC_PriorityGroup_4);
exti_init();
}
/*
[..] To enable access to the RTC Domain and RTC registers, proceed as follows:
(+) Enable the Power Controller (PWR) APB1 interface clock using the
RCC_APB1PeriphClockCmd() function.
(+) Enable access to RTC domain using the PWR_BackupAccessCmd() function.
(+) Select the RTC clock source using the RCC_RTCCLKConfig() function.
(+) Enable RTC Clock using the RCC_RTCCLKCmd() function.
*/
void board_set_rtc_register(uint32_t sig, uint16_t reg)
{
PWR->CR |= PWR_CR_DBP;
RTC_WriteBackupRegister(reg, sig);
PWR->CR &= ~PWR_CR_DBP;
}
uint32_t board_get_rtc_register(uint16_t reg)
{
// enable the backup registers.
PWR->CR |= PWR_CR_DBP;
uint32_t ret = RTC_ReadBackupRegister(reg);
PWR->CR &= ~PWR_CR_DBP;
return ret;
}
// 1st executing function
void inline init(void) {
// now we can use stack
// turn on and enable RTC
RCC->APB1ENR |= RCC_APB1ENR_PWREN;
RCC->AHB1ENR |= RCC_AHB1ENR_BKPSRAMEN;
PWR_BackupAccessCmd(ENABLE);
RCC_RTCCLKConfig(RCC_RTCCLKSource_LSI);
RCC_RTCCLKCmd(ENABLE);
// enable the backup registers.
RCC->BDCR |= RCC_BDCR_RTCEN;
RTC_WriteProtectionCmd(DISABLE);
for(volatile int i=0; i<50; i++); // small delay
// RTC is ready
if(board_get_rtc_register(RTC_SIGNATURE_REG) == DFU_RTC_SIGNATURE) {
board_set_rtc_register(0, RTC_SIGNATURE_REG);
for(volatile int i=0; i<50; i++); // small delay
uint32_t reg=board_get_rtc_register(RTC_SIGNATURE_REG); // read again
if(reg==0) {
goDFU(); // just after reset - so all hardware is in boot state
}
}
bool overclock_failed = false;
uint8_t overclock=0;
uint32_t g = board_get_rtc_register(RTC_OV_GUARD_REG);
if(g == OV_GUARD_FAIL_SIGNATURE) {
overclock_failed = true; // never reset it to 0 if failed once
} else if(g == OV_GUARD_SIGNATURE) { // overclock fails
overclock_failed = true; // never reset it to 0 if failed once
board_set_rtc_register(OV_GUARD_FAIL_SIGNATURE, RTC_OVERCLOCK_REG); //
} else {
uint32_t sig=board_get_rtc_register(RTC_OVERCLOCK_REG);
if((sig & ~OVERCLOCK_SIG_MASK ) == OVERCLOCK_SIGNATURE) {
board_set_rtc_register(0, RTC_OVERCLOCK_REG); //
overclock = (uint8_t)sig & OVERCLOCK_SIG_MASK;
if(overclock) {
board_set_rtc_register(OV_GUARD_SIGNATURE, RTC_OV_GUARD_REG); // set guard in case overclock fails
} else {
board_set_rtc_register(0, RTC_OV_GUARD_REG); // clear guard
}
}
}
systemInit(overclock); // calls SetSysClock
SystemCoreClockUpdate(); // update SystemCoreClock variable to current frequency
enableFPU();
setupNVIC();
systick_init(SYSTICK_RELOAD_VAL);
stopwatch_init(); // will use stopwatch_delay_us() and stopwatch_get_ticks()
#ifdef DEBUG_BUILD
//*/// enable clock in sleep for debugging
DBGMCU->CR |= DBGMCU_STANDBY | DBGMCU_STOP | DBGMCU_SLEEP;
DBGMCU->APB1FZ |= DBGMCU_TIM4_STOP | DBGMCU_TIM5_STOP | DBGMCU_TIM7_STOP; // stop internal timers
DBGMCU->APB2FZ |= DBGMCU_TIM10_STOP | DBGMCU_TIM11_STOP;
//*///
#endif
boardInit(); // board-specific part of init
/*
only CPU init here, all another moved to modules .init() functions
*/
interrupts();
if(!overclock_failed) {
// comes here - all ok, we can clear guard
board_set_rtc_register(0, RTC_OV_GUARD_REG); //
}
}
// called with stack in MSP
void pre_init(){ // before any stack usage @NG
setupCCM(); // needs because stack in CCM
init();
}
// частота неправильная и штатными функциями задержки мы не можем пользоваться
void emerg_delay(uint32_t n){
volatile uint32_t i;
while(n){
for (i=4000; i!=0; i--) { // 16MHz, command each tick - ~4MHz or 0.25uS * 4000 = 1ms
asm volatile("nop \n");
}
n--;
}
}
void NMI_Handler() {
//Очищаем флаг прерывания CSS
RCC->CIR |= RCC_CIR_CSSC;
//Ждем некоторое время после сбоя, если он кратковременный
//Возможно удастся перезапустить
emerg_delay(100); // clock is wrong so all micros() etc lies!
//Пытаемся запустить HSE
RCC_HSEConfig(RCC_HSE_ON);
emerg_delay(1); //Задержка на запуск кварца
if (RCC_WaitForHSEStartUp() == SUCCESS){
//Если запустился - проводим установку заново
SetSysClock(0); // without overclocking
} else {
// кварц не запустился, переключаемся на HSI и выставляем полную частоту
/* PLL_VCO = (HSE_VALUE or HSI_VALUE / PLL_M) * PLL_N */
#define PLL_M 8
#define PLL_N 168
/* SYSCLK = PLL_VCO / PLL_P */
#define PLL_P 2
/* USB OTG FS, SDIO and RNG Clock = PLL_VCO / PLLQ */
#define PLL_Q 7
/* Enable high performance mode, System frequency up to 168 MHz */
RCC->APB1ENR |= RCC_APB1ENR_PWREN;
PWR->CR |= PWR_CR_PMODE;
/* HCLK = SYSCLK / 1*/
RCC->CFGR |= RCC_CFGR_HPRE_DIV1;
/* PCLK2 = HCLK / 2*/
RCC->CFGR |= RCC_CFGR_PPRE2_DIV2;
/* PCLK1 = HCLK / 4*/
RCC->CFGR |= RCC_CFGR_PPRE1_DIV4;
/* Configure the main PLL */
RCC->PLLCFGR = PLL_M | (PLL_N << 6) | (((PLL_P >> 1) -1) << 16) |
(RCC_PLLCFGR_PLLSRC_HSI) | (PLL_Q << 24);
/* Enable the main PLL */
RCC->CR |= RCC_CR_PLLON;
/* Wait till the main PLL is ready */
while((RCC->CR & RCC_CR_PLLRDY) == 0) { } // TODO: do something on failure?
/* Select the main PLL as system clock source */
RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));
RCC->CFGR |= RCC_CFGR_SW_PLL;
SystemCoreClock=168000000;
}
}