ardupilot/APMrover2/radio.pde

232 lines
7.4 KiB
Plaintext
Raw Normal View History

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
//Function that will read the radio data, limit servos and trigger a failsafe
// ----------------------------------------------------------------------------
static byte failsafeCounter = 0; // we wait a second to take over the throttle and send the plane circling
static void init_rc_in()
{
// set rc reversing
update_servo_switches();
// set rc channel ranges
g.channel_roll.set_angle(SERVO_MAX);
g.channel_pitch.set_angle(SERVO_MAX);
g.channel_rudder.set_angle(SERVO_MAX);
g.channel_throttle.set_range(0, 100);
// set rc dead zones
g.channel_roll.set_dead_zone(60);
g.channel_pitch.set_dead_zone(60);
g.channel_rudder.set_dead_zone(60);
g.channel_throttle.set_dead_zone(6);
//g.channel_roll.dead_zone = 60;
//g.channel_pitch.dead_zone = 60;
//g.channel_rudder.dead_zone = 60;
//g.channel_throttle.dead_zone = 6;
//set auxiliary ranges
update_aux_servo_function(&g.rc_5, &g.rc_6, &g.rc_7, &g.rc_8);
}
static void init_rc_out()
{
APM_RC.Init( &isr_registry ); // APM Radio initialization
APM_RC.enable_out(CH_1);
APM_RC.enable_out(CH_2);
APM_RC.enable_out(CH_3);
APM_RC.enable_out(CH_4);
APM_RC.enable_out(CH_5);
APM_RC.enable_out(CH_6);
APM_RC.enable_out(CH_7);
APM_RC.enable_out(CH_8);
#if HIL_MODE != HIL_MODE_ATTITUDE
APM_RC.OutputCh(CH_1, g.channel_roll.radio_trim); // Initialization of servo outputs
APM_RC.OutputCh(CH_2, g.channel_pitch.radio_trim);
APM_RC.OutputCh(CH_3, g.channel_throttle.radio_min);
APM_RC.OutputCh(CH_4, g.channel_rudder.radio_trim);
APM_RC.OutputCh(CH_5, g.rc_5.radio_trim);
APM_RC.OutputCh(CH_6, g.rc_6.radio_trim);
APM_RC.OutputCh(CH_7, g.rc_7.radio_trim);
APM_RC.OutputCh(CH_8, g.rc_8.radio_trim);
#else
APM_RC.OutputCh(CH_1, 1500); // Initialization of servo outputs
APM_RC.OutputCh(CH_2, 1500);
APM_RC.OutputCh(CH_3, 1000);
APM_RC.OutputCh(CH_4, 1500);
APM_RC.OutputCh(CH_5, 1500);
APM_RC.OutputCh(CH_6, 1500);
APM_RC.OutputCh(CH_7, 1500);
APM_RC.OutputCh(CH_8, 2000);
#endif
}
static void read_radio()
{
ch1_temp = APM_RC.InputCh(CH_ROLL);
ch2_temp = APM_RC.InputCh(CH_PITCH);
if(g.mix_mode == 0){
g.channel_roll.set_pwm(ch1_temp);
g.channel_pitch.set_pwm(ch2_temp);
}else{
g.channel_roll.set_pwm(BOOL_TO_SIGN(g.reverse_elevons) * (BOOL_TO_SIGN(g.reverse_ch2_elevon) * int(ch2_temp - elevon2_trim) - BOOL_TO_SIGN(g.reverse_ch1_elevon) * int(ch1_temp - elevon1_trim)) / 2 + 1500);
g.channel_pitch.set_pwm((BOOL_TO_SIGN(g.reverse_ch2_elevon) * int(ch2_temp - elevon2_trim) + BOOL_TO_SIGN(g.reverse_ch1_elevon) * int(ch1_temp - elevon1_trim)) / 2 + 1500);
}
g.channel_throttle.set_pwm(APM_RC.InputCh(CH_3));
g.channel_rudder.set_pwm(APM_RC.InputCh(CH_4));
g.rc_5.set_pwm(APM_RC.InputCh(CH_5));
g.rc_6.set_pwm(APM_RC.InputCh(CH_6));
g.rc_7.set_pwm(APM_RC.InputCh(CH_7));
g.rc_8.set_pwm(APM_RC.InputCh(CH_8));
// TO DO - go through and patch throttle reverse for RC_Channel library compatibility
#if THROTTLE_REVERSE == 1
g.channel_throttle.radio_in = g.channel_throttle.radio_max + g.channel_throttle.radio_min - g.channel_throttle.radio_in;
#endif
control_failsafe(g.channel_throttle.radio_in);
g.channel_throttle.servo_out = g.channel_throttle.control_in;
if (g.channel_throttle.servo_out > 50) {
throttle_nudge = (g.throttle_max - g.throttle_cruise) * ((g.channel_throttle.norm_input()-0.5) / 0.5);
} else {
throttle_nudge = 0;
}
/*
Serial.printf_P(PSTR("OUT 1: %d\t2: %d\t3: %d\t4: %d \n"),
g.rc_1.control_in,
g.rc_2.control_in,
g.rc_3.control_in,
g.rc_4.control_in);
*/
}
static void control_failsafe(uint16_t pwm)
{
if(g.throttle_fs_enabled == 0)
return;
// Check for failsafe condition based on loss of GCS control
if (rc_override_active) {
if(millis() - rc_override_fs_timer > FAILSAFE_SHORT_TIME) {
ch3_failsafe = true;
} else {
ch3_failsafe = false;
}
//Check for failsafe and debounce funky reads
} else if (g.throttle_fs_enabled) {
if (pwm < (unsigned)g.throttle_fs_value){
// we detect a failsafe from radio
// throttle has dropped below the mark
failsafeCounter++;
if (failsafeCounter == 9){
gcs_send_text_fmt(PSTR("MSG FS ON %u"), (unsigned)pwm);
}else if(failsafeCounter == 10) {
ch3_failsafe = true;
}else if (failsafeCounter > 10){
failsafeCounter = 11;
}
}else if(failsafeCounter > 0){
// we are no longer in failsafe condition
// but we need to recover quickly
failsafeCounter--;
if (failsafeCounter > 3){
failsafeCounter = 3;
}
if (failsafeCounter == 1){
gcs_send_text_fmt(PSTR("MSG FS OFF %u"), (unsigned)pwm);
}else if(failsafeCounter == 0) {
ch3_failsafe = false;
}else if (failsafeCounter <0){
failsafeCounter = -1;
}
}
}
}
static void trim_control_surfaces()
{
read_radio();
// Store control surface trim values
// ---------------------------------
if(g.mix_mode == 0){
if ((g.channel_roll.radio_in > 1400) && (g.channel_pitch.radio_trim > 1400)) {
g.channel_roll.radio_trim = g.channel_roll.radio_max + g.channel_roll.radio_min - g.channel_roll.radio_in;
g.channel_pitch.radio_trim = g.channel_pitch.radio_max + g.channel_pitch.radio_min - g.channel_pitch.radio_in;
g.channel_rudder.radio_trim = g.channel_rudder.radio_max + g.channel_rudder.radio_min - g.channel_rudder.radio_in;
RC_Channel_aux::set_radio_trim(RC_Channel_aux::k_aileron);
} else {
g.channel_roll.radio_trim = 1500; // case of HIL test without receiver active
g.channel_pitch.radio_trim = 1500;
g.channel_rudder.radio_trim = 1500;
g.channel_throttle.radio_trim = 1000;
}
}else{
elevon1_trim = ch1_temp;
elevon2_trim = ch2_temp;
//Recompute values here using new values for elevon1_trim and elevon2_trim
//We cannot use radio_in[CH_ROLL] and radio_in[CH_PITCH] values from read_radio() because the elevon trim values have changed
uint16_t center = 1500;
g.channel_roll.radio_trim = center;
g.channel_pitch.radio_trim = center;
}
// save to eeprom
g.channel_roll.save_eeprom();
g.channel_pitch.save_eeprom();
//g.channel_throttle.save_eeprom();
g.channel_rudder.save_eeprom();
}
static void trim_radio()
{
for (int y = 0; y < 30; y++) {
read_radio();
}
// Store the trim values
// ---------------------
if(g.mix_mode == 0){
if ((g.channel_roll.radio_in > 1400) && (g.channel_pitch.radio_trim > 1400)) {
g.channel_roll.radio_trim = g.channel_roll.radio_in;
g.channel_pitch.radio_trim = g.channel_pitch.radio_in;
//g.channel_throttle.radio_trim = g.channel_throttle.radio_in;
g.channel_rudder.radio_trim = g.channel_rudder.radio_in;
RC_Channel_aux::set_radio_trim(RC_Channel_aux::k_aileron);
} else {
g.channel_roll.radio_trim = 1500; // case of HIL test without receiver active
g.channel_pitch.radio_trim = 1500;
g.channel_rudder.radio_trim = 1500;
g.channel_throttle.radio_trim = 1000;
}
} else {
elevon1_trim = ch1_temp;
elevon2_trim = ch2_temp;
uint16_t center = 1500;
g.channel_roll.radio_trim = center;
g.channel_pitch.radio_trim = center;
g.channel_rudder.radio_trim = g.channel_rudder.radio_in;
}
// save to eeprom
g.channel_roll.save_eeprom();
g.channel_pitch.save_eeprom();
//g.channel_throttle.save_eeprom();
g.channel_rudder.save_eeprom();
}