ardupilot/libraries/AP_HAL_ChibiOS/SPIDevice.cpp

330 lines
9.0 KiB
C++
Raw Normal View History

/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "SPIDevice.h"
#include <AP_HAL/AP_HAL.h>
#include <AP_HAL/utility/OwnPtr.h>
#include "Util.h"
#include "Scheduler.h"
#include "Semaphores.h"
#include <stdio.h>
#if HAL_USE_SPI == TRUE
using namespace ChibiOS;
extern const AP_HAL::HAL& hal;
// SPI mode numbers
#define SPIDEV_MODE0 0
#define SPIDEV_MODE1 SPI_CR1_CPHA
#define SPIDEV_MODE2 SPI_CR1_CPOL
#define SPIDEV_MODE3 SPI_CR1_CPOL | SPI_CR1_CPHA
#define SPI1_CLOCK STM32_PCLK2
#define SPI2_CLOCK STM32_PCLK1
#define SPI3_CLOCK STM32_PCLK1
#define SPI4_CLOCK STM32_PCLK2
static const struct SPIDriverInfo {
SPIDriver *driver;
uint8_t busid; // used for device IDs in parameters
uint8_t dma_channel_rx;
uint8_t dma_channel_tx;
} spi_devices[] = { HAL_SPI_BUS_LIST };
#define MHZ (1000U*1000U)
#define KHZ (1000U)
// device list comes from hwdef.dat
ChibiOS::SPIDesc SPIDeviceManager::device_table[] = { HAL_SPI_DEVICE_LIST };
SPIBus::SPIBus(uint8_t _bus) :
DeviceBus(APM_SPI_PRIORITY),
bus(_bus)
{
// allow for sharing of DMA channels with other peripherals
dma_handle = new Shared_DMA(spi_devices[bus].dma_channel_rx,
spi_devices[bus].dma_channel_tx,
FUNCTOR_BIND_MEMBER(&SPIBus::dma_allocate, void),
FUNCTOR_BIND_MEMBER(&SPIBus::dma_deallocate, void));
}
/*
allocate DMA channel
*/
void SPIBus::dma_allocate(void)
{
// nothing to do as we call spiStart() on each transaction
}
/*
deallocate DMA channel
*/
void SPIBus::dma_deallocate(void)
{
// another non-SPI peripheral wants one of our DMA channels
if (spi_started) {
spiStop(spi_devices[bus].driver);
spi_started = false;
}
}
SPIDevice::SPIDevice(SPIBus &_bus, SPIDesc &_device_desc)
: bus(_bus)
, device_desc(_device_desc)
{
set_device_bus(spi_devices[_bus.bus].busid);
set_device_address(_device_desc.device);
freq_flag_low = derive_freq_flag(device_desc.lowspeed);
freq_flag_high = derive_freq_flag(device_desc.highspeed);
set_speed(AP_HAL::Device::SPEED_LOW);
asprintf(&pname, "SPI:%s:%u:%u",
device_desc.name,
(unsigned)bus.bus, (unsigned)device_desc.device);
//printf("SPI device %s on %u:%u at speed %u mode %u\n",
// device_desc.name,
// (unsigned)bus.bus, (unsigned)device_desc.device,
// (unsigned)frequency, (unsigned)device_desc.mode);
}
SPIDevice::~SPIDevice()
{
//printf("SPI device %s on %u:%u closed\n", device_desc.name,
// (unsigned)bus.bus, (unsigned)device_desc.device);
free(pname);
}
bool SPIDevice::set_speed(AP_HAL::Device::Speed speed)
{
switch (speed) {
case AP_HAL::Device::SPEED_HIGH:
freq_flag = freq_flag_high;
break;
case AP_HAL::Device::SPEED_LOW:
freq_flag = freq_flag_low;
break;
}
return true;
}
/*
low level transfer function
*/
void SPIDevice::do_transfer(const uint8_t *send, uint8_t *recv, uint32_t len)
{
bool old_cs_forced = cs_forced;
if (!set_chip_select(true)) {
return;
}
uint8_t *recv_buf = recv;
const uint8_t *send_buf = send;
bus.bouncebuffer_setup(send_buf, len, recv_buf, len);
spiExchange(spi_devices[device_desc.bus].driver, len, send_buf, recv_buf);
if (recv_buf != recv) {
memcpy(recv, recv_buf, len);
}
set_chip_select(old_cs_forced);
}
uint16_t SPIDevice::derive_freq_flag(uint32_t _frequency)
{
uint8_t i;
uint32_t spi_clock_freq;
switch(device_desc.bus) {
case 0:
spi_clock_freq = SPI1_CLOCK;
break;
case 1:
spi_clock_freq = SPI2_CLOCK;
break;
case 2:
spi_clock_freq = SPI4_CLOCK;
break;
case 3:
spi_clock_freq = SPI4_CLOCK;
break;
default:
spi_clock_freq = SPI1_CLOCK;
break;
}
for(i = 0; i <= 7; i++) {
spi_clock_freq /= 2;
if (spi_clock_freq <= _frequency) {
break;
}
}
switch(i) {
case 0: //PCLK DIV 2
return 0;
case 1: //PCLK DIV 4
return SPI_CR1_BR_0;
case 2: //PCLK DIV 8
return SPI_CR1_BR_1;
case 3: //PCLK DIV 16
return SPI_CR1_BR_1 | SPI_CR1_BR_0;
case 4: //PCLK DIV 32
return SPI_CR1_BR_2;
case 5: //PCLK DIV 64
return SPI_CR1_BR_2 | SPI_CR1_BR_0;
case 6: //PCLK DIV 128
return SPI_CR1_BR_2 | SPI_CR1_BR_1;
case 7: //PCLK DIV 256
default:
return SPI_CR1_BR_2 | SPI_CR1_BR_1 | SPI_CR1_BR_0;
}
}
bool SPIDevice::transfer(const uint8_t *send, uint32_t send_len,
uint8_t *recv, uint32_t recv_len)
{
if (!bus.semaphore.check_owner()) {
hal.console->printf("SPI: not owner of 0x%x\n", unsigned(get_bus_id()));
return false;
}
if (send_len == recv_len && send == recv) {
// simplest cases, needed for DMA
do_transfer(send, recv, recv_len);
return true;
}
uint8_t buf[send_len+recv_len];
if (send_len > 0) {
memcpy(buf, send, send_len);
}
if (recv_len > 0) {
memset(&buf[send_len], 0, recv_len);
}
do_transfer(buf, buf, send_len+recv_len);
if (recv_len > 0) {
memcpy(recv, &buf[send_len], recv_len);
}
return true;
}
bool SPIDevice::transfer_fullduplex(const uint8_t *send, uint8_t *recv, uint32_t len)
{
bus.semaphore.assert_owner();
uint8_t buf[len];
memcpy(buf, send, len);
do_transfer(buf, buf, len);
memcpy(recv, buf, len);
return true;
}
AP_HAL::Semaphore *SPIDevice::get_semaphore()
{
return &bus.semaphore;
}
AP_HAL::Device::PeriodicHandle SPIDevice::register_periodic_callback(uint32_t period_usec, AP_HAL::Device::PeriodicCb cb)
{
return bus.register_periodic_callback(period_usec, cb, this);
}
bool SPIDevice::adjust_periodic_callback(AP_HAL::Device::PeriodicHandle h, uint32_t period_usec)
{
return bus.adjust_timer(h, period_usec);
}
/*
allow for control of SPI chip select pin
*/
bool SPIDevice::set_chip_select(bool set)
{
bus.semaphore.assert_owner();
if (set && cs_forced) {
return true;
}
if (!set && !cs_forced) {
return false;
}
if (!set && cs_forced) {
spiUnselectI(spi_devices[device_desc.bus].driver); /* Slave Select de-assertion. */
spiReleaseBus(spi_devices[device_desc.bus].driver); /* Ownership release. */
cs_forced = false;
bus.dma_handle->unlock();
} else {
bus.dma_handle->lock();
spiAcquireBus(spi_devices[device_desc.bus].driver); /* Acquire ownership of the bus. */
bus.spicfg.end_cb = nullptr;
bus.spicfg.ssport = PAL_PORT(device_desc.pal_line);
bus.spicfg.sspad = PAL_PAD(device_desc.pal_line);
bus.spicfg.cr1 = (uint16_t)(freq_flag | device_desc.mode);
bus.spicfg.cr2 = 0;
if (bus.spi_started) {
spiStop(spi_devices[device_desc.bus].driver);
bus.spi_started = false;
}
spiStart(spi_devices[device_desc.bus].driver, &bus.spicfg); /* Setup transfer parameters. */
bus.spi_started = true;
spiSelectI(spi_devices[device_desc.bus].driver); /* Slave Select assertion. */
cs_forced = true;
}
return true;
}
/*
return a SPIDevice given a string device name
*/
AP_HAL::OwnPtr<AP_HAL::SPIDevice>
SPIDeviceManager::get_device(const char *name)
{
/* Find the bus description in the table */
uint8_t i;
for (i = 0; i<ARRAY_SIZE_SIMPLE(device_table); i++) {
if (strcmp(device_table[i].name, name) == 0) {
break;
}
}
if (i == ARRAY_SIZE_SIMPLE(device_table)) {
printf("SPI: Invalid device name: %s\n", name);
return AP_HAL::OwnPtr<AP_HAL::SPIDevice>(nullptr);
}
SPIDesc &desc = device_table[i];
// find the bus
SPIBus *busp;
for (busp = buses; busp; busp = (SPIBus *)busp->next) {
if (busp->bus == desc.bus) {
break;
}
}
if (busp == nullptr) {
// create a new one
busp = new SPIBus(desc.bus);
if (busp == nullptr) {
return nullptr;
}
busp->next = buses;
busp->bus = desc.bus;
buses = busp;
}
return AP_HAL::OwnPtr<AP_HAL::SPIDevice>(new SPIDevice(*busp, desc));
}
#endif