2015-07-22 10:46:53 -03:00
/*
* This program is free software : you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation , either version 3 of the License , or
* ( at your option ) any later version .
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
* along with this program . If not , see < http : //www.gnu.org/licenses/>.
*/
# include <stdlib.h>
2015-08-15 13:42:46 -03:00
# include <AP_HAL/AP_HAL.h>
2017-01-03 05:56:57 -04:00
# include <SRV_Channel/SRV_Channel.h>
2015-07-22 10:46:53 -03:00
# include "AP_MotorsHeli_Single.h"
2015-11-30 16:16:04 -04:00
# include <GCS_MAVLink/GCS.h>
2015-07-22 10:46:53 -03:00
extern const AP_HAL : : HAL & hal ;
2015-10-25 14:03:46 -03:00
const AP_Param : : GroupInfo AP_MotorsHeli_Single : : var_info [ ] = {
2015-07-22 10:46:53 -03:00
AP_NESTEDGROUPINFO ( AP_MotorsHeli , 0 ) ,
// @Param: SV1_POS
// @DisplayName: Servo 1 Position
// @Description: Angular location of swash servo #1
// @Range: -180 180
// @Units: Degrees
// @User: Standard
// @Increment: 1
AP_GROUPINFO ( " SV1_POS " , 1 , AP_MotorsHeli_Single , _servo1_pos , AP_MOTORS_HELI_SINGLE_SERVO1_POS ) ,
// @Param: SV2_POS
// @DisplayName: Servo 2 Position
// @Description: Angular location of swash servo #2
// @Range: -180 180
// @Units: Degrees
// @User: Standard
// @Increment: 1
AP_GROUPINFO ( " SV2_POS " , 2 , AP_MotorsHeli_Single , _servo2_pos , AP_MOTORS_HELI_SINGLE_SERVO2_POS ) ,
// @Param: SV3_POS
// @DisplayName: Servo 3 Position
// @Description: Angular location of swash servo #3
// @Range: -180 180
// @Units: Degrees
// @User: Standard
// @Increment: 1
AP_GROUPINFO ( " SV3_POS " , 3 , AP_MotorsHeli_Single , _servo3_pos , AP_MOTORS_HELI_SINGLE_SERVO3_POS ) ,
// @Param: TAIL_TYPE
// @DisplayName: Tail Type
// @Description: Tail type selection. Simpler yaw controller used if external gyro is selected
// @Values: 0:Servo only,1:Servo with ExtGyro,2:DirectDrive VarPitch,3:DirectDrive FixedPitch
// @User: Standard
AP_GROUPINFO ( " TAIL_TYPE " , 4 , AP_MotorsHeli_Single , _tail_type , AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO ) ,
// @Param: SWASH_TYPE
// @DisplayName: Swash Type
// @Description: Swash Type Setting - either 3-servo CCPM or H1 Mechanical Mixing
// @Values: 0:3-Servo CCPM, 1:H1 Mechanical Mixing
// @User: Standard
AP_GROUPINFO ( " SWASH_TYPE " , 5 , AP_MotorsHeli_Single , _swash_type , AP_MOTORS_HELI_SINGLE_SWASH_CCPM ) ,
// @Param: GYR_GAIN
// @DisplayName: External Gyro Gain
// @Description: PWM sent to external gyro on ch7 when tail type is Servo w/ ExtGyro
// @Range: 0 1000
// @Units: PWM
// @Increment: 1
// @User: Standard
2015-08-09 08:02:54 -03:00
AP_GROUPINFO ( " GYR_GAIN " , 6 , AP_MotorsHeli_Single , _ext_gyro_gain_std , AP_MOTORS_HELI_SINGLE_EXT_GYRO_GAIN ) ,
2015-07-22 10:46:53 -03:00
// @Param: PHANG
// @DisplayName: Swashplate Phase Angle Compensation
// @Description: Phase angle correction for rotor head. If pitching the swash forward induces a roll, this can be correct the problem
// @Range: -90 90
// @Units: Degrees
// @User: Advanced
// @Increment: 1
AP_GROUPINFO ( " PHANG " , 7 , AP_MotorsHeli_Single , _phase_angle , 0 ) ,
// @Param: COLYAW
// @DisplayName: Collective-Yaw Mixing
// @Description: Feed-forward compensation to automatically add rudder input when collective pitch is increased. Can be positive or negative depending on mechanics.
// @Range: -10 10
// @Increment: 0.1
2016-07-26 02:35:15 -03:00
// @User: Advanced
2015-07-22 10:46:53 -03:00
AP_GROUPINFO ( " COLYAW " , 8 , AP_MotorsHeli_Single , _collective_yaw_effect , 0 ) ,
// @Param: FLYBAR_MODE
// @DisplayName: Flybar Mode Selector
// @Description: Flybar present or not. Affects attitude controller used during ACRO flight mode
2016-03-17 02:03:36 -03:00
// @Values: 0:NoFlybar,1:Flybar
2015-07-22 10:46:53 -03:00
// @User: Standard
AP_GROUPINFO ( " FLYBAR_MODE " , 9 , AP_MotorsHeli_Single , _flybar_mode , AP_MOTORS_HELI_NOFLYBAR ) ,
// @Param: TAIL_SPEED
// @DisplayName: Direct Drive VarPitch Tail ESC speed
// @Description: Direct Drive VarPitch Tail ESC speed. Only used when TailType is DirectDrive VarPitch
// @Range: 0 1000
// @Units: PWM
// @Increment: 1
// @User: Standard
2015-08-12 14:46:13 -03:00
AP_GROUPINFO ( " TAIL_SPEED " , 10 , AP_MotorsHeli_Single , _direct_drive_tailspeed , AP_MOTORS_HELI_SINGLE_DDVPT_SPEED_DEFAULT ) ,
2015-07-22 10:46:53 -03:00
2015-08-09 08:02:54 -03:00
// @Param: GYR_GAIN_ACRO
// @DisplayName: External Gyro Gain for ACRO
// @Description: PWM sent to external gyro on ch7 when tail type is Servo w/ ExtGyro. A value of zero means to use H_GYR_GAIN
// @Range: 0 1000
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO ( " GYR_GAIN_ACRO " , 11 , AP_MotorsHeli_Single , _ext_gyro_gain_acro , 0 ) ,
2016-02-08 07:11:55 -04:00
2016-06-04 05:03:16 -03:00
// @Param: RSC_PWM_MIN
// @DisplayName: RSC PWM output miniumum
// @Description: This sets the PWM output on RSC channel for maximum rotor speed
// @Range: 0 2000
// @User: Standard
AP_GROUPINFO ( " RSC_PWM_MIN " , 16 , AP_MotorsHeli_Single , _main_rotor . _pwm_min , 1000 ) ,
// @Param: RSC_PWM_MAX
// @DisplayName: RSC PWM output maxiumum
// @Description: This sets the PWM output on RSC channel for miniumum rotor speed
// @Range: 0 2000
// @User: Standard
AP_GROUPINFO ( " RSC_PWM_MAX " , 17 , AP_MotorsHeli_Single , _main_rotor . _pwm_max , 2000 ) ,
// @Param: RSC_PWM_REV
// @DisplayName: RSC PWM reversal
// @Description: This controls reversal of the RSC channel output
// @Values: -1:Reversed,1:Normal
// @User: Standard
AP_GROUPINFO ( " RSC_PWM_REV " , 18 , AP_MotorsHeli_Single , _main_rotor . _pwm_rev , 1 ) ,
2016-02-08 07:11:55 -04:00
// parameters up to and including 29 are reserved for tradheli
2015-07-22 10:46:53 -03:00
AP_GROUPEND
} ;
// set update rate to motors - a value in hertz
void AP_MotorsHeli_Single : : set_update_rate ( uint16_t speed_hz )
{
// record requested speed
_speed_hz = speed_hz ;
// setup fast channels
uint32_t mask =
2015-09-29 00:00:16 -03:00
1U < < AP_MOTORS_MOT_1 |
1U < < AP_MOTORS_MOT_2 |
1U < < AP_MOTORS_MOT_3 |
1U < < AP_MOTORS_MOT_4 ;
2016-01-04 06:24:06 -04:00
rc_set_freq ( mask , _speed_hz ) ;
2015-07-22 10:46:53 -03:00
}
2015-08-12 12:41:40 -03:00
// enable - starts allowing signals to be sent to motors and servos
2015-07-22 10:46:53 -03:00
void AP_MotorsHeli_Single : : enable ( )
{
// enable output channels
2016-01-04 06:24:06 -04:00
rc_enable_ch ( AP_MOTORS_MOT_1 ) ; // swash servo 1
rc_enable_ch ( AP_MOTORS_MOT_2 ) ; // swash servo 2
rc_enable_ch ( AP_MOTORS_MOT_3 ) ; // swash servo 3
rc_enable_ch ( AP_MOTORS_MOT_4 ) ; // yaw
rc_enable_ch ( AP_MOTORS_HELI_SINGLE_AUX ) ; // output for gyro gain or direct drive variable pitch tail motor
rc_enable_ch ( AP_MOTORS_HELI_SINGLE_RSC ) ; // output for main rotor esc
2015-08-12 12:41:40 -03:00
}
// init_outputs - initialise Servo/PWM ranges and endpoints
2017-01-03 05:56:57 -04:00
bool AP_MotorsHeli_Single : : init_outputs ( )
2015-08-12 12:41:40 -03:00
{
2017-01-03 05:56:57 -04:00
if ( ! _flags . initialised_ok ) {
_swash_servo_1 = SRV_Channels : : get_channel_for ( SRV_Channel : : k_motor1 , CH_1 ) ;
_swash_servo_2 = SRV_Channels : : get_channel_for ( SRV_Channel : : k_motor2 , CH_2 ) ;
_swash_servo_3 = SRV_Channels : : get_channel_for ( SRV_Channel : : k_motor3 , CH_3 ) ;
_yaw_servo = SRV_Channels : : get_channel_for ( SRV_Channel : : k_motor4 , CH_4 ) ;
_servo_aux = SRV_Channels : : get_channel_for ( SRV_Channel : : k_motor7 , CH_7 ) ;
if ( ! _swash_servo_1 | | ! _swash_servo_2 | | ! _swash_servo_3 | | ! _yaw_servo | | ! _servo_aux ) {
return false ;
}
}
2015-08-12 12:41:40 -03:00
// reset swash servo range and endpoints
reset_swash_servo ( _swash_servo_1 ) ;
reset_swash_servo ( _swash_servo_2 ) ;
reset_swash_servo ( _swash_servo_3 ) ;
2017-01-03 05:56:57 -04:00
_yaw_servo - > set_angle ( 4500 ) ;
2015-08-12 12:41:40 -03:00
// set main rotor servo range
// tail rotor servo use range as set in vehicle code for rc7
_main_rotor . init_servo ( ) ;
2017-01-03 05:56:57 -04:00
return true ;
2015-07-22 10:46:53 -03:00
}
// output_test - spin a motor at the pwm value specified
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
void AP_MotorsHeli_Single : : output_test ( uint8_t motor_seq , int16_t pwm )
{
// exit immediately if not armed
if ( ! armed ( ) ) {
return ;
}
// output to motors and servos
switch ( motor_seq ) {
case 1 :
// swash servo 1
2016-01-04 01:56:54 -04:00
rc_write ( AP_MOTORS_MOT_1 , pwm ) ;
2015-07-22 10:46:53 -03:00
break ;
case 2 :
// swash servo 2
2016-01-04 01:56:54 -04:00
rc_write ( AP_MOTORS_MOT_2 , pwm ) ;
2015-07-22 10:46:53 -03:00
break ;
case 3 :
// swash servo 3
2016-01-04 01:56:54 -04:00
rc_write ( AP_MOTORS_MOT_3 , pwm ) ;
2015-07-22 10:46:53 -03:00
break ;
case 4 :
// external gyro & tail servo
if ( _tail_type = = AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO_EXTGYRO ) {
2015-08-09 08:02:54 -03:00
if ( _acro_tail & & _ext_gyro_gain_acro > 0 ) {
2016-02-03 04:58:01 -04:00
write_aux ( _ext_gyro_gain_acro / 1000.0f ) ;
2015-08-09 08:02:54 -03:00
} else {
2016-02-03 04:58:01 -04:00
write_aux ( _ext_gyro_gain_std / 1000.0f ) ;
2015-08-09 08:02:54 -03:00
}
2015-07-22 10:46:53 -03:00
}
2016-01-04 01:56:54 -04:00
rc_write ( AP_MOTORS_MOT_4 , pwm ) ;
2015-07-22 10:46:53 -03:00
break ;
case 5 :
// main rotor
2016-01-04 01:56:54 -04:00
rc_write ( AP_MOTORS_HELI_SINGLE_RSC , pwm ) ;
2015-07-22 10:46:53 -03:00
break ;
default :
// do nothing
break ;
}
}
// set_desired_rotor_speed
2016-02-03 04:59:44 -04:00
void AP_MotorsHeli_Single : : set_desired_rotor_speed ( float desired_speed )
2015-07-22 10:46:53 -03:00
{
_main_rotor . set_desired_speed ( desired_speed ) ;
2015-08-12 20:20:30 -03:00
// always send desired speed to tail rotor control, will do nothing if not DDVPT not enabled
2016-02-03 04:59:44 -04:00
_tail_rotor . set_desired_speed ( _direct_drive_tailspeed / 1000.0f ) ;
2015-07-22 10:46:53 -03:00
}
2015-11-14 18:14:03 -04:00
// calculate_scalars - recalculates various scalers used.
void AP_MotorsHeli_Single : : calculate_armed_scalars ( )
{
_main_rotor . set_ramp_time ( _rsc_ramp_time ) ;
_main_rotor . set_runup_time ( _rsc_runup_time ) ;
2016-02-03 04:59:44 -04:00
_main_rotor . set_critical_speed ( _rsc_critical / 1000.0f ) ;
_main_rotor . set_idle_output ( _rsc_idle_output / 1000.0f ) ;
2016-06-29 23:28:34 -03:00
_main_rotor . set_power_output_range ( _rsc_power_low / 1000.0f , _rsc_power_high / 1000.0f , _rsc_power_negc / 1000.0f , ( uint16_t ) _rsc_slewrate . get ( ) ) ;
2015-11-14 18:14:03 -04:00
}
2015-08-12 12:41:40 -03:00
// calculate_scalars - recalculates various scalers used.
void AP_MotorsHeli_Single : : calculate_scalars ( )
2015-07-22 10:46:53 -03:00
{
2015-08-12 12:41:40 -03:00
// range check collective min, max and mid
if ( _collective_min > = _collective_max ) {
_collective_min = AP_MOTORS_HELI_COLLECTIVE_MIN ;
_collective_max = AP_MOTORS_HELI_COLLECTIVE_MAX ;
}
_collective_mid = constrain_int16 ( _collective_mid , _collective_min , _collective_max ) ;
2016-02-05 21:39:47 -04:00
// calculate collective mid point as a number from 0 to 1
_collective_mid_pct = ( ( float ) ( _collective_mid - _collective_min ) ) / ( ( float ) ( _collective_max - _collective_min ) ) ;
2015-08-12 12:41:40 -03:00
// calculate factors based on swash type and servo position
calculate_roll_pitch_collective_factors ( ) ;
// send setpoints to main rotor controller and trigger recalculation of scalars
2015-08-28 03:23:26 -03:00
_main_rotor . set_control_mode ( static_cast < RotorControlMode > ( _rsc_mode . get ( ) ) ) ;
2015-11-14 18:14:03 -04:00
calculate_armed_scalars ( ) ;
2015-08-12 12:41:40 -03:00
// send setpoints to tail rotor controller and trigger recalculation of scalars
2015-08-12 20:20:30 -03:00
if ( _tail_type = = AP_MOTORS_HELI_SINGLE_TAILTYPE_DIRECTDRIVE_VARPITCH ) {
2015-08-28 03:23:26 -03:00
_tail_rotor . set_control_mode ( ROTOR_CONTROL_MODE_SPEED_SETPOINT ) ;
2015-08-12 14:46:13 -03:00
_tail_rotor . set_ramp_time ( AP_MOTORS_HELI_SINGLE_DDVPT_RAMP_TIME ) ;
_tail_rotor . set_runup_time ( AP_MOTORS_HELI_SINGLE_DDVPT_RUNUP_TIME ) ;
2016-02-03 04:59:44 -04:00
_tail_rotor . set_critical_speed ( _rsc_critical / 1000.0f ) ;
_tail_rotor . set_idle_output ( _rsc_idle_output / 1000.0f ) ;
2015-08-11 15:31:20 -03:00
} else {
2015-08-28 03:23:26 -03:00
_tail_rotor . set_control_mode ( ROTOR_CONTROL_MODE_DISABLED ) ;
2015-08-11 15:31:20 -03:00
_tail_rotor . set_ramp_time ( 0 ) ;
_tail_rotor . set_runup_time ( 0 ) ;
_tail_rotor . set_critical_speed ( 0 ) ;
2015-08-11 21:20:28 -03:00
_tail_rotor . set_idle_output ( 0 ) ;
2015-07-22 10:46:53 -03:00
}
}
2015-08-12 12:41:40 -03:00
// calculate_roll_pitch_collective_factors - calculate factors based on swash type and servo position
void AP_MotorsHeli_Single : : calculate_roll_pitch_collective_factors ( )
{
if ( _swash_type = = AP_MOTORS_HELI_SINGLE_SWASH_CCPM ) { //CCPM Swashplate, perform control mixing
// roll factors
2016-02-03 01:36:48 -04:00
_rollFactor [ CH_1 ] = cosf ( radians ( _servo1_pos + 90 - _phase_angle ) ) ;
_rollFactor [ CH_2 ] = cosf ( radians ( _servo2_pos + 90 - _phase_angle ) ) ;
_rollFactor [ CH_3 ] = cosf ( radians ( _servo3_pos + 90 - _phase_angle ) ) ;
2015-08-12 12:41:40 -03:00
// pitch factors
2016-02-03 01:36:48 -04:00
_pitchFactor [ CH_1 ] = cosf ( radians ( _servo1_pos - _phase_angle ) ) ;
_pitchFactor [ CH_2 ] = cosf ( radians ( _servo2_pos - _phase_angle ) ) ;
_pitchFactor [ CH_3 ] = cosf ( radians ( _servo3_pos - _phase_angle ) ) ;
2015-08-12 12:41:40 -03:00
// collective factors
_collectiveFactor [ CH_1 ] = 1 ;
_collectiveFactor [ CH_2 ] = 1 ;
_collectiveFactor [ CH_3 ] = 1 ;
2016-05-12 13:59:30 -03:00
} else { //H1 Swashplate, keep servo outputs separated
2015-08-12 12:41:40 -03:00
// roll factors
_rollFactor [ CH_1 ] = 1 ;
_rollFactor [ CH_2 ] = 0 ;
_rollFactor [ CH_3 ] = 0 ;
// pitch factors
_pitchFactor [ CH_1 ] = 0 ;
_pitchFactor [ CH_2 ] = 1 ;
_pitchFactor [ CH_3 ] = 0 ;
// collective factors
_collectiveFactor [ CH_1 ] = 0 ;
_collectiveFactor [ CH_2 ] = 0 ;
_collectiveFactor [ CH_3 ] = 1 ;
}
}
2015-07-22 10:46:53 -03:00
// get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used)
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
uint16_t AP_MotorsHeli_Single : : get_motor_mask ( )
{
// heli uses channels 1,2,3,4,7 and 8
2016-01-04 16:35:24 -04:00
return rc_map_mask ( 1U < < 0 | 1U < < 1 | 1U < < 2 | 1U < < 3 | 1U < < AP_MOTORS_HELI_SINGLE_AUX | 1U < < AP_MOTORS_HELI_SINGLE_RSC ) ;
2015-07-22 10:46:53 -03:00
}
2015-08-12 14:22:39 -03:00
// update_motor_controls - sends commands to motor controllers
2015-08-28 03:23:26 -03:00
void AP_MotorsHeli_Single : : update_motor_control ( RotorControlState state )
2015-08-11 16:12:16 -03:00
{
2015-08-12 14:22:39 -03:00
// Send state update to motors
_tail_rotor . output ( state ) ;
_main_rotor . output ( state ) ;
2015-08-11 16:12:16 -03:00
2015-10-14 12:19:16 -03:00
if ( state = = ROTOR_CONTROL_STOP ) {
// set engine run enable aux output to not run position to kill engine when disarmed
2017-01-03 05:56:57 -04:00
SRV_Channels : : set_output_limit ( SRV_Channel : : k_engine_run_enable , SRV_Channel : : SRV_CHANNEL_LIMIT_MIN ) ;
2015-10-14 12:19:16 -03:00
} else {
// else if armed, set engine run enable output to run position
2017-01-03 05:56:57 -04:00
SRV_Channels : : set_output_limit ( SRV_Channel : : k_engine_run_enable , SRV_Channel : : SRV_CHANNEL_LIMIT_MAX ) ;
2015-10-14 12:19:16 -03:00
}
2015-08-12 14:22:39 -03:00
// Check if both rotors are run-up, tail rotor controller always returns true if not enabled
_heliflags . rotor_runup_complete = ( _main_rotor . is_runup_complete ( ) & & _tail_rotor . is_runup_complete ( ) ) ;
2015-07-22 10:46:53 -03:00
}
//
2015-08-12 12:41:40 -03:00
// move_actuators - moves swash plate and tail rotor
2015-07-22 10:46:53 -03:00
// - expected ranges:
2016-02-02 08:24:39 -04:00
// roll : -1 ~ +1
// pitch: -1 ~ +1
// collective: 0 ~ 1
// yaw: -1 ~ +1
2015-07-22 10:46:53 -03:00
//
2016-02-02 08:24:39 -04:00
void AP_MotorsHeli_Single : : move_actuators ( float roll_out , float pitch_out , float coll_in , float yaw_out )
2015-07-22 10:46:53 -03:00
{
2016-02-02 08:24:39 -04:00
float yaw_offset = 0.0f ;
2015-07-22 10:46:53 -03:00
// initialize limits flag
limit . roll_pitch = false ;
limit . yaw = false ;
limit . throttle_lower = false ;
limit . throttle_upper = false ;
2014-09-18 22:54:26 -03:00
// rescale roll_out and pitch_out into the min and max ranges to provide linear motion
2015-08-12 12:41:40 -03:00
// across the input range instead of stopping when the input hits the constrain value
2014-09-18 22:54:26 -03:00
// these calculations are based on an assumption of the user specified cyclic_max
2016-02-02 08:24:39 -04:00
// coming into this equation at 4500 or less
2016-04-16 06:58:46 -03:00
float total_out = norm ( pitch_out , roll_out ) ;
2014-09-18 22:54:26 -03:00
2016-02-02 08:24:39 -04:00
if ( total_out > ( _cyclic_max / 4500.0f ) ) {
float ratio = ( float ) ( _cyclic_max / 4500.0f ) / total_out ;
2014-09-18 22:54:26 -03:00
roll_out * = ratio ;
pitch_out * = ratio ;
2015-08-12 12:41:40 -03:00
limit . roll_pitch = true ;
}
2015-07-22 10:46:53 -03:00
2015-08-12 12:41:40 -03:00
// constrain collective input
2016-02-02 08:24:39 -04:00
float collective_out = coll_in ;
if ( collective_out < = 0.0f ) {
collective_out = 0.0f ;
2015-08-12 12:41:40 -03:00
limit . throttle_lower = true ;
}
2016-02-02 08:24:39 -04:00
if ( collective_out > = 1.0f ) {
collective_out = 1.0f ;
2015-08-12 12:41:40 -03:00
limit . throttle_upper = true ;
}
2015-07-22 10:46:53 -03:00
2015-08-12 12:41:40 -03:00
// ensure not below landed/landing collective
2016-02-02 08:24:39 -04:00
if ( _heliflags . landing_collective & & collective_out < ( _land_collective_min / 1000.0f ) ) {
collective_out = ( _land_collective_min / 1000.0f ) ;
2015-08-12 12:41:40 -03:00
limit . throttle_lower = true ;
}
2015-07-22 10:46:53 -03:00
2015-08-12 12:41:40 -03:00
// if servo output not in manual mode, process pre-compensation factors
2015-10-14 15:57:51 -03:00
if ( _servo_mode = = SERVO_CONTROL_MODE_AUTOMATED ) {
2015-07-22 10:46:53 -03:00
// rudder feed forward based on collective
2015-08-10 17:25:28 -03:00
// the feed-forward is not required when the motor is stopped or at idle, and thus not creating torque
2015-07-22 10:46:53 -03:00
// also not required if we are using external gyro
2016-02-03 05:00:50 -04:00
if ( ( _main_rotor . get_control_output ( ) > _main_rotor . get_idle_output ( ) ) & & _tail_type ! = AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO_EXTGYRO ) {
2015-07-22 10:46:53 -03:00
// sanity check collective_yaw_effect
_collective_yaw_effect = constrain_float ( _collective_yaw_effect , - AP_MOTORS_HELI_SINGLE_COLYAW_RANGE , AP_MOTORS_HELI_SINGLE_COLYAW_RANGE ) ;
2016-08-09 18:58:06 -03:00
// the 4.5 scaling factor is to bring the values in line with previous releases
yaw_offset = _collective_yaw_effect * fabsf ( collective_out - _collective_mid_pct ) / 4.5f ;
2015-07-22 10:46:53 -03:00
}
2015-08-12 12:41:40 -03:00
} else {
2016-02-02 08:24:39 -04:00
yaw_offset = 0.0f ;
2015-07-22 10:46:53 -03:00
}
2015-08-11 21:20:28 -03:00
// feed power estimate into main rotor controller
// ToDo: include tail rotor power?
// ToDo: add main rotor cyclic power?
2016-06-12 02:02:14 -03:00
if ( collective_out > _collective_mid_pct ) {
2016-06-29 23:28:34 -03:00
// +ve motor load for +ve collective
2016-06-12 02:02:14 -03:00
_main_rotor . set_motor_load ( ( collective_out - _collective_mid_pct ) / ( 1.0f - _collective_mid_pct ) ) ;
} else {
2016-06-29 23:28:34 -03:00
// -ve motor load for -ve collective
_main_rotor . set_motor_load ( ( collective_out - _collective_mid_pct ) / _collective_mid_pct ) ;
2016-06-12 02:02:14 -03:00
}
2015-08-11 21:20:28 -03:00
2015-07-22 10:46:53 -03:00
// swashplate servos
2016-02-02 08:24:39 -04:00
float collective_scalar = ( ( float ) ( _collective_max - _collective_min ) ) / 1000.0f ;
float coll_out_scaled = collective_out * collective_scalar + ( _collective_min - 1000 ) / 1000.0f ;
float servo1_out = ( ( _rollFactor [ CH_1 ] * roll_out ) + ( _pitchFactor [ CH_1 ] * pitch_out ) ) * 0.45f + _collectiveFactor [ CH_1 ] * coll_out_scaled ;
float servo2_out = ( ( _rollFactor [ CH_2 ] * roll_out ) + ( _pitchFactor [ CH_2 ] * pitch_out ) ) * 0.45f + _collectiveFactor [ CH_2 ] * coll_out_scaled ;
2015-07-22 10:46:53 -03:00
if ( _swash_type = = AP_MOTORS_HELI_SINGLE_SWASH_H1 ) {
2016-02-02 08:24:39 -04:00
servo1_out + = 0.5f ;
servo2_out + = 0.5f ;
2015-07-22 10:46:53 -03:00
}
2016-02-02 08:24:39 -04:00
float servo3_out = ( ( _rollFactor [ CH_3 ] * roll_out ) + ( _pitchFactor [ CH_3 ] * pitch_out ) ) * 0.45f + _collectiveFactor [ CH_3 ] * coll_out_scaled ;
2015-07-22 10:46:53 -03:00
2016-10-12 19:34:48 -03:00
// rescale from -1..1, so we can use the pwm calc that includes trim
servo1_out = 2 * servo1_out - 1 ;
servo2_out = 2 * servo2_out - 1 ;
servo3_out = 2 * servo3_out - 1 ;
2015-07-22 10:46:53 -03:00
// actually move the servos
2016-10-12 19:34:48 -03:00
rc_write ( AP_MOTORS_MOT_1 , calc_pwm_output_1to1 ( servo1_out , _swash_servo_1 ) ) ;
rc_write ( AP_MOTORS_MOT_2 , calc_pwm_output_1to1 ( servo2_out , _swash_servo_2 ) ) ;
rc_write ( AP_MOTORS_MOT_3 , calc_pwm_output_1to1 ( servo3_out , _swash_servo_3 ) ) ;
2015-09-28 19:03:32 -03:00
2015-07-22 10:46:53 -03:00
// update the yaw rate using the tail rotor/servo
2015-08-06 05:25:31 -03:00
move_yaw ( yaw_out + yaw_offset ) ;
2015-07-22 10:46:53 -03:00
}
2015-08-06 05:25:31 -03:00
// move_yaw
2016-02-02 08:25:31 -04:00
void AP_MotorsHeli_Single : : move_yaw ( float yaw_out )
2015-07-22 10:46:53 -03:00
{
2016-02-02 08:25:31 -04:00
// sanity check yaw_out
if ( yaw_out < - 1.0f ) {
yaw_out = - 1.0f ;
limit . yaw = true ;
}
if ( yaw_out > 1.0f ) {
yaw_out = 1.0f ;
2015-07-22 10:46:53 -03:00
limit . yaw = true ;
}
2016-02-02 08:25:31 -04:00
rc_write ( AP_MOTORS_MOT_4 , calc_pwm_output_1to1 ( yaw_out , _yaw_servo ) ) ;
2015-07-22 10:46:53 -03:00
if ( _tail_type = = AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO_EXTGYRO ) {
// output gain to exernal gyro
2015-08-09 08:02:54 -03:00
if ( _acro_tail & & _ext_gyro_gain_acro > 0 ) {
2016-02-03 04:58:01 -04:00
write_aux ( _ext_gyro_gain_acro / 1000.0f ) ;
2015-08-09 08:02:54 -03:00
} else {
2016-02-03 04:58:01 -04:00
write_aux ( _ext_gyro_gain_std / 1000.0f ) ;
2015-08-09 08:02:54 -03:00
}
2016-02-03 04:59:44 -04:00
} else if ( _tail_type = = AP_MOTORS_HELI_SINGLE_TAILTYPE_DIRECTDRIVE_FIXEDPITCH & & _main_rotor . get_desired_speed ( ) > 0.0f ) {
2015-07-22 10:46:53 -03:00
// output yaw servo to tail rsc
2016-02-02 08:25:31 -04:00
// To-Do: fix this messy calculation
2016-02-03 04:58:01 -04:00
write_aux ( yaw_out * 0.5f + 1.0f ) ;
2015-07-22 10:46:53 -03:00
}
}
2016-02-03 04:58:01 -04:00
// write_aux - converts servo_out parameter value (0 to 1 range) to pwm and outputs to aux channel (ch7)
void AP_MotorsHeli_Single : : write_aux ( float servo_out )
2015-07-22 10:46:53 -03:00
{
2016-02-03 04:58:01 -04:00
rc_write ( AP_MOTORS_HELI_SINGLE_AUX , calc_pwm_output_0to1 ( servo_out , _servo_aux ) ) ;
2015-08-28 03:23:26 -03:00
}
2015-10-21 17:00:36 -03:00
// servo_test - move servos through full range of movement
void AP_MotorsHeli_Single : : servo_test ( )
{
2015-10-30 14:38:04 -03:00
_servo_test_cycle_time + = 1.0f / _loop_rate ;
if ( ( _servo_test_cycle_time > = 0.0f & & _servo_test_cycle_time < 0.5f ) | | // Tilt swash back
( _servo_test_cycle_time > = 6.0f & & _servo_test_cycle_time < 6.5f ) ) {
2016-12-01 12:18:30 -04:00
_pitch_test + = ( 1.0f / ( _loop_rate / 2.0f ) ) ;
2016-02-25 13:13:02 -04:00
_oscillate_angle + = 8 * M_PI / _loop_rate ;
2016-02-05 21:38:18 -04:00
_yaw_test = 0.5f * sinf ( _oscillate_angle ) ;
2015-10-30 14:38:04 -03:00
} else if ( ( _servo_test_cycle_time > = 0.5f & & _servo_test_cycle_time < 4.5f ) | | // Roll swash around
( _servo_test_cycle_time > = 6.5f & & _servo_test_cycle_time < 10.5f ) ) {
2016-02-25 13:13:02 -04:00
_oscillate_angle + = M_PI / ( 2 * _loop_rate ) ;
2016-02-05 21:38:18 -04:00
_roll_test = sinf ( _oscillate_angle ) ;
_pitch_test = cosf ( _oscillate_angle ) ;
_yaw_test = sinf ( _oscillate_angle ) ;
2015-10-30 14:38:04 -03:00
} else if ( ( _servo_test_cycle_time > = 4.5f & & _servo_test_cycle_time < 5.0f ) | | // Return swash to level
( _servo_test_cycle_time > = 10.5f & & _servo_test_cycle_time < 11.0f ) ) {
2016-12-01 12:18:30 -04:00
_pitch_test - = ( 1.0f / ( _loop_rate / 2.0f ) ) ;
2016-02-25 13:13:02 -04:00
_oscillate_angle + = 8 * M_PI / _loop_rate ;
2016-02-05 21:38:18 -04:00
_yaw_test = 0.5f * sinf ( _oscillate_angle ) ;
2015-10-30 14:38:04 -03:00
} else if ( _servo_test_cycle_time > = 5.0f & & _servo_test_cycle_time < 6.0f ) { // Raise swash to top
2016-02-05 21:38:18 -04:00
_collective_test + = ( 1.0f / _loop_rate ) ;
2016-02-25 13:13:02 -04:00
_oscillate_angle + = 2 * M_PI / _loop_rate ;
2016-02-05 21:38:18 -04:00
_yaw_test = sinf ( _oscillate_angle ) ;
2015-10-30 14:38:04 -03:00
} else if ( _servo_test_cycle_time > = 11.0f & & _servo_test_cycle_time < 12.0f ) { // Lower swash to bottom
2016-02-05 21:38:18 -04:00
_collective_test - = ( 1.0f / _loop_rate ) ;
2016-02-25 13:13:02 -04:00
_oscillate_angle + = 2 * M_PI / _loop_rate ;
2016-02-05 21:38:18 -04:00
_yaw_test = sinf ( _oscillate_angle ) ;
2015-10-30 14:38:04 -03:00
} else { // reset cycle
_servo_test_cycle_time = 0.0f ;
_oscillate_angle = 0.0f ;
_collective_test = 0.0f ;
_roll_test = 0.0f ;
_pitch_test = 0.0f ;
_yaw_test = 0.0f ;
2015-10-21 20:47:24 -03:00
// decrement servo test cycle counter at the end of the cycle
if ( _servo_test_cycle_counter > 0 ) {
_servo_test_cycle_counter - - ;
}
2015-10-21 17:00:36 -03:00
}
// over-ride servo commands to move servos through defined ranges
2016-01-06 05:06:15 -04:00
_throttle_in = _collective_test ;
2016-01-21 22:10:52 -04:00
_roll_in = _roll_test ;
_pitch_in = _pitch_test ;
_yaw_in = _yaw_test ;
2015-10-21 17:00:36 -03:00
}
2015-11-30 16:16:04 -04:00
// parameter_check - check if helicopter specific parameters are sensible
bool AP_MotorsHeli_Single : : parameter_check ( bool display_msg ) const
{
// returns false if Phase Angle is outside of range
if ( ( _phase_angle > 90 ) | | ( _phase_angle < - 90 ) ) {
if ( display_msg ) {
GCS_MAVLINK : : send_statustext_all ( MAV_SEVERITY_CRITICAL , " PreArm: H_PHANG out of range " ) ;
}
return false ;
}
// returns false if Acro External Gyro Gain is outside of range
if ( ( _ext_gyro_gain_acro < 0 ) | | ( _ext_gyro_gain_acro > 1000 ) ) {
if ( display_msg ) {
GCS_MAVLINK : : send_statustext_all ( MAV_SEVERITY_CRITICAL , " PreArm: H_GYR_GAIN_ACRO out of range " ) ;
}
return false ;
}
// returns false if Standard External Gyro Gain is outside of range
if ( ( _ext_gyro_gain_std < 0 ) | | ( _ext_gyro_gain_std > 1000 ) ) {
if ( display_msg ) {
GCS_MAVLINK : : send_statustext_all ( MAV_SEVERITY_CRITICAL , " PreArm: H_GYR_GAIN out of range " ) ;
}
return false ;
}
// check parent class parameters
return AP_MotorsHeli : : parameter_check ( display_msg ) ;
}