2012-11-22 09:24:53 -04:00
// !!!!!!!!!! EXPERIMENTAL TEST VERSION - USE WITH CAUTION - DO NOT RELEASE PUBLIC FIRMWARE !!!!!!!!!!
// -------------------------------------------------------------
// PPM ENCODER V2.3.11
// -------------------------------------------------------------
// Improved servo to ppm for ArduPilot MEGA v1.x (ATmega328p),
// PhoneDrone and APM2 (ATmega32u2)
// By: John Arne Birkeland - 2012
// APM v1.x adaptation and "difficult" receiver testing by Olivier ADLER
// -------------------------------------------------------------
// Changelog:
// 01-08-2011
// V2.2.3 - Changed back to BLOCKING interrupts.
// Assembly PPM compare interrupt can be switch back to non-blocking, but not recommended.
// V2.2.3 - Implemented 0.5us cut filter to remove servo input capture jitter.
// 04-08-2011
2016-05-12 14:15:46 -03:00
// V2.2.4 - Implemented PPM passtrough function.
2012-11-22 09:24:53 -04:00
// Shorting channel 2&3 enabled ppm passtrough on channel 1.
// 04-08-2011
// V2.2.5 - Implemented simple average filter to smooth servo input capture jitter.
// Takes fewer clocks to execute and has better performance then cut filter.
// 05-08-2011
// V2.2.51 - Minor bug fixes.
// 06-08-2011
// V2.2.6 - PPM passtrough failsafe implemented.
// The PPM generator will be activated and output failsafe values while ppm passtrough signal is missing.
// 01-09-2011
// V2.2.61 - Temporary MUX pin always high patch for APM beta board
// 22-09-2011
// V2.2.62 - ATmegaXXU2 USB connection status pin (PC2) for APM UART MUX selection (removed temporary high patch)
// - Removed assembly optimized PPM generator (not usable for production release)
// 23-09-2011
// V2.2.63 - Average filter disabled
// 24-09-2011
// V2.2.64 - Added distincts Power on / Failsafe PPM values
// - Changed CH5 (mode selection) PPM Power on and Failsafe values to 1555 (Flight mode 4)
// - Added brownout detection : Failsafe values are copied after a brownout reset instead of power on values
// 25-09-2011
// V2.2.65 - Implemented PPM output delay until input signal is detected (PWM and PPM pass-trough mode)
// - Changed brownout detection and FailSafe handling to work with XXU2 chips
// - Minor variable and define naming changes to enhance readability
// 15-03-2012
// V2.2.66 - Added APM2 (ATmega32U2) support for using TX and RX status leds to indicate PWM and PPM traffic
2012-11-22 11:54:04 -04:00
// - <RX>: <OFF> = no pwm input detected, <TOGGLE> = speed of toggle indicate how many channel are active, <ON> = input lost (failsafe)
// - <TX>: <OFF> = ppm output not started, <FAST TOGGLE> = normal PWM->PPM output or PPM passtrough failsafe, <SLOW TOGGLE> = PPM passtrough
2012-11-22 09:24:53 -04:00
// 03-06-2012
// V2.2.67 - Implemented detection and failsafe (throttle = 900us) for missing throttle signal.
// 04-06-2012
// V2.2.68 - Fixed possible logic flaw in throttle failsafe reset if _JITTER_FILTER_ is enabled
// 02-11-2012
// V2.2.69 - Added PPM output positive polarity - mainly for standalone PPM encoder board use
// 03-11-2012
// V2.3.0 - Implemented single channel fail-safe detection for all inputs
// 16-11-2012
// V2.3.1 - Improved watchdog timer reset, so that only valid input signals will prevent the watchdog timer from triggering
// 22-11-2012
// V2.3.11 - Very experimental test forcing throttle fail-safe (RTL) on single channel loss. !DO NOT RELEASE TO PUBLIC!
2012-11-22 11:54:04 -04:00
// - Test for active input channels during init
2012-11-22 09:24:53 -04:00
// -------------------------------------------------------------
# ifndef _PPM_ENCODER_H_
# define _PPM_ENCODER_H_
# include <avr/io.h>
// -------------------------------------------------------------
# include <avr/interrupt.h>
# include <avr/wdt.h>
# include <util/delay.h>
// -------------------------------------------------------------
// SERVO INPUT FILTERS
// -------------------------------------------------------------
// Using both filters is not recommended and may reduce servo input resolution
// #define _AVERAGE_FILTER_ // Average filter to smooth servo input capture jitter
// #define _JITTER_FILTER_ // Cut filter to remove 0,5us servo input capture jitter
// -------------------------------------------------------------
# ifndef F_CPU
2012-11-22 11:54:04 -04:00
# define F_CPU 16000000UL
2012-11-22 09:24:53 -04:00
# endif
# ifndef true
# define true 1
# endif
# ifndef false
# define false 0
# endif
# ifndef bool
# define bool _Bool
# endif
// Version stamp for firmware hex file ( decode hex file using <avr-objdump -s file.hex> and look for "ArduPPM" string )
const char ver [ 15 ] = " ArduPPMv2.3.11 " ;
// -------------------------------------------------------------
// INPUT MODE
// -------------------------------------------------------------
# define JUMPER_SELECT_MODE 0 // Default - PPM passtrough mode selected if channel 2&3 shorted. Normal servo input (pwm) if not shorted.
# define SERVO_PWM_MODE 1 // Normal 8 channel servo (pwm) input
# define PPM_PASSTROUGH_MODE 2 // PPM signal passtrough on channel 1
# define JETI_MODE 3 // Reserved
# define SPEKTRUM_MODE 4 // Reserved for Spektrum satelitte on channel 1
// Servo input mode (jumper (default), pwm, ppm, jeti or spektrum)
volatile uint8_t servo_input_mode = JUMPER_SELECT_MODE ;
// -------------------------------------------------------------
// Number of Timer1 ticks in one microsecond
# define ONE_US F_CPU / 8 / 1000 / 1000
// 400us PPM pre pulse
# define PPM_PRE_PULSE ONE_US * 400
// -------------------------------------------------------------
// SERVO LIMIT VALUES
// -------------------------------------------------------------
// Servo minimum position
# define PPM_SERVO_MIN ONE_US * 900 - PPM_PRE_PULSE
// Servo center position
# define PPM_SERVO_CENTER ONE_US * 1500 - PPM_PRE_PULSE
// Servo maximum position
# define PPM_SERVO_MAX ONE_US * 2100 - PPM_PRE_PULSE
// Throttle default at power on
# define PPM_THROTTLE_DEFAULT ONE_US * 1100 - PPM_PRE_PULSE
// Throttle during failsafe
# define PPM_THROTTLE_FAILSAFE ONE_US * 900 - PPM_PRE_PULSE
// CH5 power on values (mode selection channel)
# define PPM_CH5_MODE_4 ONE_US * 1555 - PPM_PRE_PULSE
// -------------------------------------------------------------
// PPM OUTPUT SETTINGS
// -------------------------------------------------------------
2012-11-22 11:54:04 -04:00
// #define _POSITIVE_PPM_FRAME_ // Switch to positive pulse PPM
2012-11-22 09:24:53 -04:00
// (the actual timing is encoded in the length of the low between two pulses)
// Number of servo input channels
# define SERVO_CHANNELS 8
// PPM period 18.5ms - 26.5ms (54hz - 37Hz)
# define PPM_PERIOD ONE_US * ( 22500 - ( 8 * 1500 ) )
// Size of ppm[..] data array ( servo channels * 2 + 2)
# define PPM_ARRAY_MAX 18
// -------------------------------------------------------------
// SERVO FAILSAFE VALUES
// -------------------------------------------------------------
const uint16_t failsafe_ppm [ PPM_ARRAY_MAX ] =
{
PPM_PRE_PULSE ,
PPM_SERVO_CENTER , // Channel 1
PPM_PRE_PULSE ,
PPM_SERVO_CENTER , // Channel 2
PPM_PRE_PULSE ,
PPM_THROTTLE_FAILSAFE , // Channel 3 (throttle)
PPM_PRE_PULSE ,
PPM_SERVO_CENTER , // Channel 4
PPM_PRE_PULSE ,
PPM_CH5_MODE_4 , // Channel 5
PPM_PRE_PULSE ,
PPM_SERVO_CENTER , // Channel 6
PPM_PRE_PULSE ,
PPM_SERVO_CENTER , // Channel 7
PPM_PRE_PULSE ,
PPM_SERVO_CENTER , // Channel 8
PPM_PRE_PULSE ,
PPM_PERIOD
} ;
// -------------------------------------------------------------
// Data array for storing ppm (8 channels) pulse widths.
// -------------------------------------------------------------
volatile uint16_t ppm [ PPM_ARRAY_MAX ] =
{
PPM_PRE_PULSE ,
PPM_SERVO_CENTER , // Channel 1
PPM_PRE_PULSE ,
PPM_SERVO_CENTER , // Channel 2
PPM_PRE_PULSE ,
PPM_THROTTLE_DEFAULT , // Channel 3 (throttle)
PPM_PRE_PULSE ,
PPM_SERVO_CENTER , // Channel 4
PPM_PRE_PULSE ,
PPM_CH5_MODE_4 , // Channel 5
PPM_PRE_PULSE ,
PPM_SERVO_CENTER , // Channel 6
PPM_PRE_PULSE ,
PPM_SERVO_CENTER , // Channel 7
PPM_PRE_PULSE ,
PPM_SERVO_CENTER , // Channel 8
PPM_PRE_PULSE ,
PPM_PERIOD
} ;
// -------------------------------------------------------------
// Data arraw for storing ppm timeout (missing channel detection)
// -------------------------------------------------------------
# define PPM_TIMEOUT_VALUE 40 // ~1sec before triggering missing channel detection
volatile uint8_t ppm_timeout [ PPM_ARRAY_MAX ] ;
// Servo input channel connected flag
volatile bool servo_input_connected [ PPM_ARRAY_MAX ] ;
// AVR parameters for PhoneDrone and APM2 boards using ATmega32u2
# if defined (__AVR_ATmega16U2__) || defined (__AVR_ATmega32U2__)
# define SERVO_DDR DDRB
# define SERVO_PORT PORTB
# define SERVO_INPUT PINB
# define SERVO_INT_VECTOR PCINT0_vect
# define SERVO_INT_MASK PCMSK0
# define SERVO_INT_CLEAR_FLAG PCIF0
# define SERVO_INT_ENABLE PCIE0
# define SERVO_TIMER_CNT TCNT1
# define PPM_DDR DDRC
# define PPM_PORT PORTC
# define PPM_OUTPUT_PIN PC6
# define PPM_INT_VECTOR TIMER1_COMPA_vect
# define PPM_COMPARE OCR1A
# define PPM_COMPARE_FLAG COM1A0
# define PPM_COMPARE_ENABLE OCIE1A
# define PPM_COMPARE_FORCE_MATCH FOC1A
# define USB_DDR DDRC
# define USB_PORT PORTC
# define USB_PIN PC2
// true if we have received a USB device connect event
static bool usb_connected ;
// USB connected event
void EVENT_USB_Device_Connect ( void )
{
// Toggle USB pin high if USB is connected
USB_PORT | = ( 1 < < USB_PIN ) ;
usb_connected = true ;
// this unsets the pin connected to PA1 on the 2560
// when the bit is clear, USB is connected
PORTD & = ~ 1 ;
}
// USB disconnect event
void EVENT_USB_Device_Disconnect ( void )
{
// toggle USB pin low if USB is disconnected
USB_PORT & = ~ ( 1 < < USB_PIN ) ;
usb_connected = false ;
// this sets the pin connected to PA1 on the 2560
// when the bit is clear, USB is connected
PORTD | = 1 ;
}
// AVR parameters for ArduPilot MEGA v1.4 PPM Encoder (ATmega328P)
# elif defined (__AVR_ATmega328P__) || defined (__AVR_ATmega328__)
# define SERVO_DDR DDRD
# define SERVO_PORT PORTD
# define SERVO_INPUT PIND
# define SERVO_INT_VECTOR PCINT2_vect
# define SERVO_INT_MASK PCMSK2
# define SERVO_INT_CLEAR_FLAG PCIF2
# define SERVO_INT_ENABLE PCIE2
# define SERVO_TIMER_CNT TCNT1
# define PPM_DDR DDRB
# define PPM_PORT PORTB
# define PPM_OUTPUT_PIN PB2
# define PPM_INT_VECTOR TIMER1_COMPB_vect
# define PPM_COMPARE OCR1B
# define PPM_COMPARE_FLAG COM1B0
# define PPM_COMPARE_ENABLE OCIE1B
# define PPM_COMPARE_FORCE_MATCH FOC1B
# else
# error NO SUPPORTED DEVICE FOUND! (ATmega16u2 / ATmega32u2 / ATmega328p)
# endif
// Used to force throttle fail-safe mode (RTL)
volatile bool throttle_failsafe_force = false ;
// Used to indicate invalid SERVO input signals
volatile uint8_t servo_input_errors = 0 ;
// Used to indicate missing SERVO input signals
volatile bool servo_input_missing = true ;
// Used to indicate if PPM generator is active
volatile bool ppm_generator_active = false ;
// Used to indicate a brownout restart
volatile bool brownout_reset = false ;
// ------------------------------------------------------------------------------
// PPM GENERATOR START - TOGGLE ON COMPARE INTERRUPT ENABLE
// ------------------------------------------------------------------------------
void ppm_start ( void )
{
// Prevent reenabling an already active PPM generator
if ( ppm_generator_active ) return ;
// Store interrupt status and register flags
uint8_t SREG_tmp = SREG ;
// Stop interrupts
cli ( ) ;
2012-11-22 11:54:04 -04:00
// Make sure initial output state is low
2012-11-22 09:24:53 -04:00
PPM_PORT & = ~ ( 1 < < PPM_OUTPUT_PIN ) ;
// Wait for output pin to settle
//_delay_us( 1 );
// Set initial compare toggle to maximum (32ms) to give other parts of the system time to start
SERVO_TIMER_CNT = 0 ;
PPM_COMPARE = 0xFFFF ;
// Set toggle on compare output
TCCR1A = ( 1 < < PPM_COMPARE_FLAG ) ;
// Set TIMER1 8x prescaler
TCCR1B = ( 1 < < CS11 ) ;
2012-11-22 11:54:04 -04:00
# if defined (_POSITIVE_PPM_FRAME_)
2012-11-22 09:24:53 -04:00
// Force output compare to reverse polarity
TCCR1C | = ( 1 < < PPM_COMPARE_FORCE_MATCH ) ;
# endif
// Enable output compare interrupt
TIMSK1 | = ( 1 < < PPM_COMPARE_ENABLE ) ;
// Indicate that PPM generator is active
ppm_generator_active = true ;
// Restore interrupt status and register flags
SREG = SREG_tmp ;
2012-11-22 11:54:04 -04:00
# if defined (__AVR_ATmega16U2__) || defined (__AVR_ATmega32U2__)
// Turn on TX led if PPM generator is active
PORTD & = ~ ( 1 < < PD5 ) ;
# endif
2012-11-22 09:24:53 -04:00
}
// ------------------------------------------------------------------------------
// PPM GENERATOR STOP - TOGGLE ON COMPARE INTERRUPT DISABLE
// ------------------------------------------------------------------------------
void ppm_stop ( void )
{
// Store interrupt status and register flags
uint8_t SREG_tmp = SREG ;
// Stop interrupts
cli ( ) ;
// Disable output compare interrupt
TIMSK1 & = ~ ( 1 < < PPM_COMPARE_ENABLE ) ;
// Reset TIMER1 registers
TCCR1A = 0 ;
TCCR1B = 0 ;
// Indicate that PPM generator is not active
ppm_generator_active = false ;
// Restore interrupt status and register flags
SREG = SREG_tmp ;
2012-11-22 11:54:04 -04:00
# if defined (__AVR_ATmega16U2__) || defined (__AVR_ATmega32U2__)
// Turn off TX led if PPM generator is off
PORTD | = ( 1 < < PD5 ) ;
# endif
2012-11-22 09:24:53 -04:00
}
// ------------------------------------------------------------------------------
// Watchdog Interrupt (interrupt only mode, no reset)
// ------------------------------------------------------------------------------
ISR ( WDT_vect ) // If watchdog is triggered then enable missing signal flag and copy power on or failsafe positions
{
// Use failsafe values if PPM generator is active or if chip has been reset from a brown-out
if ( ppm_generator_active | | brownout_reset )
{
// Copy failsafe values to ppm[..]
for ( uint8_t i = 0 ; i < PPM_ARRAY_MAX ; i + + )
{
ppm [ i ] = failsafe_ppm [ i ] ;
}
2012-11-22 11:54:04 -04:00
}
2012-11-22 09:24:53 -04:00
// If we are in PPM passtrough mode and a input signal has been detected, or if chip has been reset from a brown_out then start the PPM generator.
if ( ( servo_input_mode = = PPM_PASSTROUGH_MODE & & servo_input_missing = = false ) | | brownout_reset )
{
// Start PPM generator
ppm_start ( ) ;
brownout_reset = false ;
2012-11-22 11:54:04 -04:00
}
2012-11-22 09:24:53 -04:00
// Set missing receiver signal flag
servo_input_missing = true ;
// Reset servo input error flag
servo_input_errors = 0 ;
2012-11-22 11:54:04 -04:00
# if defined (__AVR_ATmega16U2__) || defined (__AVR_ATmega32U2__)
// Turn on RX led if failsafe has triggered after ppm generator i active
if ( ppm_generator_active ) PORTD & = ~ ( 1 < < PD4 ) ;
# endif
2012-11-22 09:24:53 -04:00
}
// ------------------------------------------------------------------------------
// ------------------------------------------------------------------------------
// SERVO/PPM INPUT - PIN CHANGE INTERRUPT
// ------------------------------------------------------------------------------
ISR ( SERVO_INT_VECTOR )
{
// Servo pulse start timing
//static uint16_t servo_start[ SERVO_CHANNELS ] = { 0, 0, 0, 0, 0, 0, 0, 0 };
2012-11-22 11:54:04 -04:00
static uint16_t servo_start [ PPM_ARRAY_MAX ] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ; // We sacrefice some memory but save instructions by working with ppm index count (18) instead of input channel count (8)
2012-11-22 09:24:53 -04:00
2012-11-22 11:54:04 -04:00
# if defined (__AVR_ATmega16U2__) || defined (__AVR_ATmega32U2__)
// Toggle LED delay
static uint8_t led_delay = 0 ;
# endif
2012-11-22 09:24:53 -04:00
2012-11-22 11:54:04 -04:00
// Servo input pin storage
2012-11-22 09:24:53 -04:00
static uint8_t servo_pins_old = 0 ;
// Used to store current servo input pins
uint8_t servo_pins ;
// Read current servo pulse change time
uint16_t servo_time = SERVO_TIMER_CNT ;
// ------------------------------------------------------------------------------
// PPM passtrough mode ( signal passtrough from channel 1 to ppm output pin)
// ------------------------------------------------------------------------------
if ( servo_input_mode = = PPM_PASSTROUGH_MODE )
{
// Has watchdog timer failsafe started PPM generator? If so we need to stop it.
if ( ppm_generator_active )
{
// Stop PPM generator
ppm_stop ( ) ;
}
// PPM (channel 1) input pin is high
if ( SERVO_INPUT & 1 )
{
// Set PPM output pin high
PPM_PORT | = ( 1 < < PPM_OUTPUT_PIN ) ;
}
// PPM (channel 1) input pin is low
else
{
// Set PPM output pin low
PPM_PORT & = ~ ( 1 < < PPM_OUTPUT_PIN ) ;
}
// Reset Watchdog Timer
wdt_reset ( ) ;
// Set servo input missing flag false to indicate that we have received servo input signals
servo_input_missing = false ;
2012-11-22 11:54:04 -04:00
# if defined (__AVR_ATmega16U2__) || defined (__AVR_ATmega32U2__)
// Toggle TX LED at PPM passtrough
if ( + + led_delay > 128 ) // Toggle every 128th pulse
{
// Toggle TX led
PIND | = ( 1 < < PD5 ) ;
led_delay = 0 ;
}
# endif
2012-11-22 09:24:53 -04:00
// Leave interrupt
return ;
}
// ------------------------------------------------------------------------------
// SERVO PWM MODE
// ------------------------------------------------------------------------------
uint8_t servo_change ;
2012-11-22 11:54:04 -04:00
uint8_t servo_pin ;
2012-11-22 09:24:53 -04:00
//uint8_t servo_channel ;
2012-11-22 11:54:04 -04:00
uint8_t ppm_channel ;
2012-11-22 09:24:53 -04:00
CHECK_PINS_START : // Start of servo input check
// Store current servo input pins
servo_pins = SERVO_INPUT ;
// Calculate servo input pin change mask
servo_change = servo_pins ^ servo_pins_old ;
// Set initial servo pin, channel and ppm[..] index
servo_pin = 1 ;
//servo_channel = 0;
2012-11-22 11:54:04 -04:00
ppm_channel = 1 ;
2012-11-22 09:24:53 -04:00
CHECK_PINS_LOOP : // Input servo pin check loop
// Check for pin change on current servo channel
if ( servo_change & servo_pin )
{
// High (raising edge)
if ( servo_pins & servo_pin )
{
//servo_start[ servo_channel ] = servo_time;
2012-11-22 11:54:04 -04:00
servo_start [ ppm_channel ] = servo_time ;
2012-11-22 09:24:53 -04:00
}
else
{
// Get servo pulse width
//uint16_t servo_width = servo_time - servo_start[ servo_channel ] - PPM_PRE_PULSE;
2012-11-22 11:54:04 -04:00
uint16_t servo_width = servo_time - servo_start [ ppm_channel ] - PPM_PRE_PULSE ;
2012-11-22 09:24:53 -04:00
// Check that servo pulse signal is valid before sending to ppm encoder
if ( servo_width > PPM_SERVO_MAX ) goto CHECK_PINS_ERROR ;
if ( servo_width < PPM_SERVO_MIN ) goto CHECK_PINS_ERROR ;
2012-11-22 11:54:04 -04:00
// Reset Watchdog Timer
wdt_reset ( ) ;
2012-11-22 09:24:53 -04:00
// Channel has received a valid signal, so it must be connected
2012-11-22 11:54:04 -04:00
// servo_input_connected [ ppm_channel ] = true; // Removed - Check performed during init
// Check for forced throttle fail-safe
if ( throttle_failsafe_force & & ppm_channel = = 5 )
{
// Force throttle fail-safe
ppm_timeout [ ppm_channel ] = 255 ;
}
else
{
//Reset ppm single channel fail-safe timeout
ppm_timeout [ ppm_channel ] = 0 ;
}
2012-11-22 09:24:53 -04:00
# ifdef _AVERAGE_FILTER_
// Average filter to smooth input jitter
servo_width + = ppm [ ppm_channel ] ;
servo_width > > = 1 ;
# endif
# ifdef _JITTER_FILTER_
// 0.5us cut filter to remove input jitter
int16_t ppm_tmp = ppm [ ppm_channel ] - servo_width ;
if ( ppm_tmp = = 1 ) goto CHECK_PINS_NEXT ;
if ( ppm_tmp = = - 1 ) goto CHECK_PINS_NEXT ;
# endif
// Update ppm[..]
ppm [ ppm_channel ] = servo_width ;
}
}
CHECK_PINS_NEXT :
// Select next servo pin
servo_pin < < = 1 ;
// Select next servo channel
//servo_channel++;
2012-11-22 11:54:04 -04:00
// Select next ppm[..] index
ppm_channel + = 2 ;
2012-11-22 09:24:53 -04:00
// Check channel and process if needed
//if( servo_channel < SERVO_CHANNELS ) goto CHECK_PINS_LOOP;
2012-11-22 11:54:04 -04:00
if ( servo_pin ) goto CHECK_PINS_LOOP ; // Bit shifts to zero when all pins have been checked
2012-11-22 09:24:53 -04:00
goto CHECK_PINS_DONE ;
CHECK_PINS_ERROR :
// Used to indicate invalid servo input signals
servo_input_errors + + ;
2012-11-22 11:54:04 -04:00
# if defined (__AVR_ATmega16U2__) || defined (__AVR_ATmega32U2__)
// Delay LED toggle
led_delay = 0 ;
# endif
2012-11-22 09:24:53 -04:00
goto CHECK_PINS_NEXT ;
// All servo input pins has now been processed
CHECK_PINS_DONE :
// Set servo input missing flag false to indicate that we have received servo input signals
servo_input_missing = false ;
// Store current servo input pins for next check
servo_pins_old = servo_pins ;
// Start PPM generator if not already running
if ( ppm_generator_active = = false ) ppm_start ( ) ;
2012-11-22 11:54:04 -04:00
# if defined (__AVR_ATmega16U2__) || defined (__AVR_ATmega32U2__)
// Toggle RX LED when finished receiving servo pulses
if ( + + led_delay > 64 ) // Toggle led every 64th time
{
PIND | = ( 1 < < PD4 ) ;
led_delay = 0 ;
}
# endif
2012-11-22 09:24:53 -04:00
//Has servo input changed while processing pins, if so we need to re-check pins
if ( servo_pins ! = SERVO_INPUT ) goto CHECK_PINS_START ;
// Clear interrupt event from already processed pin changes
PCIFR | = ( 1 < < SERVO_INT_CLEAR_FLAG ) ;
}
// ------------------------------------------------------------------------------
// ------------------------------------------------------------------------------
// PPM OUTPUT - TIMER1 COMPARE INTERRUPT
// ------------------------------------------------------------------------------
ISR ( PPM_INT_VECTOR )
{
// Current active ppm channel
static uint8_t ppm_channel = PPM_ARRAY_MAX - 1 ;
// Update timing for next compare toggle with either current ppm input value, or fail-safe value if there is a channel timeout.
if ( ppm_timeout [ ppm_channel ] > PPM_TIMEOUT_VALUE )
{
// Use ppm fail-safe value
PPM_COMPARE + = failsafe_ppm [ ppm_channel ] ;
2012-11-22 11:54:04 -04:00
// Did we lose an active servo input channel? If so force throttle fail-safe (RTL)
if ( servo_input_connected [ ppm_channel ] )
{
throttle_failsafe_force = true ;
}
2012-11-22 09:24:53 -04:00
}
else
{
// Use latest ppm input value
PPM_COMPARE + = ppm [ ppm_channel ] ;
// Increment channel timeout (reset to zero in input interrupt each time a valid signal is detected)
ppm_timeout [ ppm_channel ] + + ;
}
// Select the next ppm channel
if ( + + ppm_channel > = PPM_ARRAY_MAX )
2012-11-22 11:54:04 -04:00
{
ppm_channel = 0 ;
# if defined (__AVR_ATmega16U2__) || defined (__AVR_ATmega32U2__)
// Blink TX LED when PPM generator has finished a pulse train
PIND | = ( 1 < < PD5 ) ;
# endif
}
2012-11-22 09:24:53 -04:00
}
// ------------------------------------------------------------------------------
// ------------------------------------------------------------------------------
// PPM READ - INTERRUPT SAFE PPM SERVO CHANNEL READ
// ------------------------------------------------------------------------------
uint16_t ppm_read_channel ( uint8_t channel )
{
// Limit channel to valid value
uint8_t _channel = channel ;
if ( _channel = = 0 ) _channel = 1 ;
if ( _channel > SERVO_CHANNELS ) _channel = SERVO_CHANNELS ;
// Calculate ppm[..] position
uint8_t ppm_index = ( _channel < < 1 ) + 1 ;
// Read ppm[..] in a non blocking interrupt safe manner
uint16_t ppm_tmp = ppm [ ppm_index ] ;
while ( ppm_tmp ! = ppm [ ppm_index ] ) ppm_tmp = ppm [ ppm_index ] ;
// Return as normal servo value
return ppm_tmp + PPM_PRE_PULSE ;
}
// ------------------------------------------------------------------------------
// ------------------------------------------------------------------------------
// PPM ENCODER INIT
// ------------------------------------------------------------------------------
void ppm_encoder_init ( void )
{
// ATmegaXXU2 only init code
// ------------------------------------------------------------------------------
# if defined (__AVR_ATmega16U2__) || defined (__AVR_ATmega32U2__)
// ------------------------------------------------------------------------------
// Reset Source checkings
// ------------------------------------------------------------------------------
if ( MCUSR & 1 ) // Power-on Reset
{
MCUSR = 0 ; // Clear MCU Status register
// custom code here
}
else if ( MCUSR & 2 ) // External Reset
{
MCUSR = 0 ; // Clear MCU Status register
// custom code here
}
else if ( MCUSR & 4 ) // Brown-Out Reset
{
MCUSR = 0 ; // Clear MCU Status register
brownout_reset = true ;
}
else // Watchdog Reset
{
MCUSR = 0 ; // Clear MCU Status register
// custom code here
}
// APM USB connection status UART MUX selector pin
// ------------------------------------------------------------------------------
USB_DDR | = ( 1 < < USB_PIN ) ; // Set USB pin to output
# endif
// USE JUMPER TO CHECK FOR PWM OR PPM PASSTROUGH MODE (channel 2&3 shorted)
// ------------------------------------------------------------------------------
if ( servo_input_mode = = JUMPER_SELECT_MODE )
{
// channel 3 status counter
uint8_t channel3_status = 0 ;
// Set channel 3 to input
SERVO_DDR & = ~ ( 1 < < 2 ) ;
// Enable channel 3 pullup
SERVO_PORT | = ( 1 < < 2 ) ;
// Set channel 2 to output
SERVO_DDR | = ( 1 < < 1 ) ;
// Set channel 2 output low
SERVO_PORT & = ~ ( 1 < < 1 ) ;
_delay_us ( 10 ) ;
// Increment channel3_status if channel 3 is set low by channel 2
if ( ( SERVO_INPUT & ( 1 < < 2 ) ) = = 0 ) channel3_status + + ;
// Set channel 2 output high
SERVO_PORT | = ( 1 < < 1 ) ;
_delay_us ( 10 ) ;
// Increment channel3_status if channel 3 is set high by channel 2
if ( ( SERVO_INPUT & ( 1 < < 2 ) ) ! = 0 ) channel3_status + + ;
// Set channel 2 output low
SERVO_PORT & = ~ ( 1 < < 1 ) ;
_delay_us ( 10 ) ;
// Increment channel3_status if channel 3 is set low by channel 2
if ( ( SERVO_INPUT & ( 1 < < 2 ) ) = = 0 ) channel3_status + + ;
// Set servo input mode based on channel3_status
if ( channel3_status = = 3 ) servo_input_mode = PPM_PASSTROUGH_MODE ;
else servo_input_mode = SERVO_PWM_MODE ;
}
// SERVO/PPM INPUT PINS
// ------------------------------------------------------------------------------
// Set all servo input pins to inputs
SERVO_DDR = 0 ;
// Activate pullups on all input pins
SERVO_PORT | = 0xFF ;
# if defined (__AVR_ATmega16U2__) || defined (__AVR_ATmega32U2__)
// on 32U2 set PD0 to be an output, and clear the bit. This tells
// the 2560 that USB is connected. The USB connection event fires
// later to set the right value
DDRD | = 1 ;
if ( usb_connected ) {
2012-11-22 11:54:04 -04:00
PORTD & = ~ 1 ;
2012-11-22 09:24:53 -04:00
} else {
2012-11-22 11:54:04 -04:00
PORTD | = 1 ;
2012-11-22 09:24:53 -04:00
}
# endif
2012-11-22 11:54:04 -04:00
// PPM PASS-THROUGH MODE
2012-11-22 09:24:53 -04:00
if ( servo_input_mode = = PPM_PASSTROUGH_MODE )
{
// Set servo input interrupt pin mask to servo input channel 1
SERVO_INT_MASK = 0x01 ;
}
2012-11-22 11:54:04 -04:00
// SERVO PWM INPUT MODE
// ------------------------------------------------------------------------------
if ( servo_input_mode = = SERVO_PWM_MODE )
{
// CHECK FOR ACTIVE INPUT CHANNELS
// ------------------------------------------------------------------------------
// This will poll the input pins looking for pin level changes, and mark the inputs with active signal connections
uint16_t input_channel_count [ SERVO_CHANNELS ] ;
uint8_t input_current ; // Input pin level mask
uint8_t input_previous ; // Input pin level mask
2016-05-12 14:15:46 -03:00
uint8_t input_int_mask ; // Active input pin interrupt mask
2012-11-22 11:54:04 -04:00
INPUT_ACTIVE_CHANNEL_CHECK :
// ~100khz timed polling of input pins for ~0.5sec duration (1us = 16 clocks)
for ( uint16_t t = 0 ; t < 50000 ; t + + ) // 10us * 1000ms * 0.5sec = 50000 delayed loops at 10us
{
// Get current input pin levels
input_current = SERVO_INPUT ;
// Check input pins against previous levels
uint8_t input_change = input_current ^ input_previous ;
// Do we need to check for changes?
if ( input_change )
{
// Check for change on all input pins
uint8_t input_pin = 1 ;
uint8_t input_channel = 0 ;
do
{
// Check for change on current input pin
if ( input_change & input_pin )
{
// Pin has changed, count it
input_channel_count [ input_channel ] + + ;
}
// Select next pin
input_pin < < = 1 ;
// Select next channel
input_channel + + ;
} while ( input_channel < SERVO_CHANNELS ) ;
// Store checked input pin levels
input_previous = input_current ;
}
// Delay the next input level check
_delay_us ( 10 ) ;
}
// Check input_channel_count[..] to see if channels are active.
for ( uint8_t input_channel = 0 ; input_channel < SERVO_CHANNELS ; input_channel + + )
{
// Is current channel active?
if ( input_channel_count [ input_channel ] > 20 ) // 0.5sec * 40hz * 2 = 40 pulse edges - 50% margin = 20 level changes
{
// Set active channel in servo_input_connected[..]
servo_input_connected [ ( input_channel < < 1 ) + 1 ] = true ;
2016-05-12 14:15:46 -03:00
// Set interrupt pin mask for active channel
2012-11-22 11:54:04 -04:00
input_int_mask | = 1 < < input_channel ;
}
}
// if no active input channels are found, then re-check until found (might be caused by delayed receiver startup)
// Do not perform re-check if there was a brown-out reset
2012-11-22 12:07:05 -04:00
if ( input_int_mask = = 0 & & ! brownout_reset )
2012-11-22 11:54:04 -04:00
{
// Re-check active input channels
goto INPUT_ACTIVE_CHANNEL_CHECK ;
}
// Set servo input interrupt pin mask
// Set to all input channel for safety in case of brown-out reset
if ( brownout_reset )
{
// Interrupt on all input pins
SERVO_INT_MASK = 0xFF ;
}
else
{
// Interrupt only on active input pins
SERVO_INT_MASK = input_int_mask ;
}
}
2012-11-22 09:24:53 -04:00
// Enable servo input interrupt
PCICR | = ( 1 < < SERVO_INT_ENABLE ) ;
2012-11-22 11:54:04 -04:00
// PPM OUTPUT
2012-11-22 09:24:53 -04:00
// ------------------------------------------------------------------------------
2012-11-22 11:54:04 -04:00
// PPM generator (PWM output timer/counter) is started either by pin change interrupt or by watchdog interrupt
2012-11-22 09:24:53 -04:00
// Set PPM pin to output
PPM_DDR | = ( 1 < < PPM_OUTPUT_PIN ) ;
2012-11-22 11:54:04 -04:00
2012-11-22 09:24:53 -04:00
// ------------------------------------------------------------------------------
// Enable watchdog interrupt mode
// ------------------------------------------------------------------------------
// Disable watchdog
wdt_disable ( ) ;
// Reset watchdog timer
wdt_reset ( ) ;
// Start timed watchdog setup sequence
WDTCSR | = ( 1 < < WDCE ) | ( 1 < < WDE ) ;
// Set 250 ms watchdog timeout and enable interrupt
WDTCSR = ( 1 < < WDIE ) | ( 1 < < WDP2 ) ;
2012-11-22 11:54:04 -04:00
2012-11-22 09:24:53 -04:00
}
// ------------------------------------------------------------------------------
# endif // _PPM_ENCODER_H_