ardupilot/ArduCopterMega/Attitude.pde

160 lines
5.0 KiB
Plaintext
Raw Normal View History

void init_pids()
{
// create limits to how much dampening we'll allow
// this creates symmetry with the P gain value preventing oscillations
max_stabilize_dampener = pid_stabilize_roll.kP() * 2500; // = 0.6 * 2500 = 1500 or 15°
//max_stabilize_dampener += pid_stabilize_roll.imax(); // = 0.1 * 300 = 1500 or 15°
max_yaw_dampener = pid_yaw.kP() * 6000; // = .5 * 6000 = 3000
//max_yaw_dampener += pid_yaw.imax(); // = 0.6 * 2500 = 1500 or 15°
}
void output_stabilize()
{
float roll_error, pitch_error;
Vector3f omega = dcm.get_gyro();
float rate;
int dampener;
// control +- 45° is mixed with the navigation request by the Autopilot
// output is in degrees = target pitch and roll of copter
rc_1.servo_out = rc_1.control_mix(nav_roll);
rc_2.servo_out = rc_2.control_mix(nav_pitch);
roll_error = rc_1.servo_out - roll_sensor;
pitch_error = rc_2.servo_out - pitch_sensor;
// limit the error we're feeding to the PID
roll_error = constrain(roll_error, -2500, 2500);
pitch_error = constrain(pitch_error, -2500, 2500);
// write out angles back to servo out - this will be converted to PWM by RC_Channel
rc_1.servo_out = pid_stabilize_roll.get_pid(roll_error, deltaMiliSeconds, 1.0);
rc_2.servo_out = pid_stabilize_pitch.get_pid(pitch_error, deltaMiliSeconds, 1.0);
// We adjust the output by the rate of rotation:
// Rate control through bias corrected gyro rates
// omega is the raw gyro reading
// Limit dampening to be equal to propotional term for symmetry
rate = degrees(omega.x) * 100.0; // 6rad = 34377
dampener = (rate * stabilize_dampener); // 34377 * .175 = 6000
rc_1.servo_out -= constrain(dampener, -max_stabilize_dampener, max_stabilize_dampener); // limit to 1500 based on kP
rate = degrees(omega.y) * 100.0; // 6rad = 34377
dampener = (rate * stabilize_dampener); // 34377 * .175 = 6000
rc_2.servo_out -= constrain(dampener, -max_stabilize_dampener, max_stabilize_dampener); // limit to 1500 based on kP
}
void
clear_yaw_control()
{
//Serial.print("Clear ");
rate_yaw_flag = false; // exit rate_yaw_flag
nav_yaw = yaw_sensor; // save our Yaw
yaw_error = 0;
}
void output_yaw_with_hold(boolean hold)
{
Vector3f omega = dcm.get_gyro();
if(hold){
// yaw hold
if(rate_yaw_flag){
// we are still in motion from rate control
if(fabs(omega.y) < .15){
clear_yaw_control();
hold = true; // just to be explicit
}else{
// return to rate control until we slow down.
hold = false;
}
}else{
}
}else{
// rate control
// this indicates we are under rate control, when we enter Yaw Hold and
// return to 0° per second, we exit rate control and hold the current Yaw
rate_yaw_flag = true;
yaw_error = 0;
}
if(hold){
// try and hold the current nav_yaw setting
yaw_error = nav_yaw - yaw_sensor; // +- 60°
yaw_error = wrap_180(yaw_error);
// limit the error we're feeding to the PID
yaw_error = constrain(yaw_error, -6000, 6000); // limit error to 60 degees
// Apply PID and save the new angle back to RC_Channel
rc_4.servo_out = pid_yaw.get_pid(yaw_error, deltaMiliSeconds, 1.0); // .5 * 6000 = 3000
// We adjust the output by the rate of rotation
long rate = degrees(omega.z) * 100.0; // 3rad = 17188 , 6rad = 34377
int dampener = ((float)rate * hold_yaw_dampener); // 18000 * .17 = 3000
// Limit dampening to be equal to propotional term for symmetry
rc_4.servo_out -= constrain(dampener, -max_yaw_dampener, max_yaw_dampener); // -3000
}else{
// rate control
long rate = degrees(omega.z) * 100; // 3rad = 17188 , 6rad = 34377
rate = constrain(rate, -36000, 36000); // limit to something fun!
long error = ((long)rc_4.control_in * 6) - rate; // control is += 6000 * 6 = 36000
// -error = CCW, +error = CW
rc_4.servo_out = pid_acro_rate_yaw.get_pid(error, deltaMiliSeconds, 1.0); // .075 * 36000 = 2700
rc_4.servo_out = constrain(rc_4.servo_out, -2400, 2400); // limit to 2400
}
}
void output_rate_control()
{
/*
Vector3f omega = dcm.get_gyro();
rc_1.servo_out = rc_2.control_in;
rc_2.servo_out = rc_2.control_in;
// Rate control through bias corrected gyro rates
// omega is the raw gyro reading plus Omega_I, so it´s bias corrected
rc_1.servo_out -= (omega.x * 5729.57795 * acro_dampener);
rc_2.servo_out -= (omega.y * 5729.57795 * acro_dampener);
//Serial.printf("\trated out %d, omega ", rc_1.servo_out);
//Serial.print((Omega[0] * 5729.57795 * stabilize_rate_roll_pitch), 3);
// Limit output
rc_1.servo_out = constrain(rc_1.servo_out, -MAX_SERVO_OUTPUT, MAX_SERVO_OUTPUT);
rc_2.servo_out = constrain(rc_2.servo_out, -MAX_SERVO_OUTPUT, MAX_SERVO_OUTPUT);
*/
}
// Zeros out navigation Integrators if we are changing mode, have passed a waypoint, etc.
// Keeps outdated data out of our calculations
void reset_I(void)
{
pid_nav.reset_I();
pid_baro_throttle.reset_I();
pid_sonar_throttle.reset_I();
}