ardupilot/Tools/LogAnalyzer/tests/TestDualGyroDrift.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

111 lines
5.8 KiB
Python
Raw Normal View History

2017-07-21 20:09:51 -03:00
from __future__ import print_function
import DataflashLog
from LogAnalyzer import Test, TestResult
# import scipy
# import pylab #### TEMP!!! only for dev
# from scipy import signal
class TestDualGyroDrift(Test):
'''test for gyro drift between dual IMU data'''
def __init__(self):
Test.__init__(self)
self.name = "Gyro Drift"
self.enable = False
def run(self, logdata, verbose):
self.result = TestResult()
self.result.status = TestResult.StatusType.GOOD
# if "IMU" not in logdata.channels or "IMU2" not in logdata.channels:
# self.result.status = TestResult.StatusType.NA
# return
# imuX = logdata.channels["IMU"]["GyrX"].listData
# imu2X = logdata.channels["IMU2"]["GyrX"].listData
# # NOTE: weird thing about Holger's log is that the counts of IMU+IMU2 are different
# print("length 1: %.2f, length 2: %.2f" % (len(imuX),len(imu2X)))
# #assert(len(imuX) == len(imu2X))
# # divide the curve into segments and get the average of each segment
# # we will get the diff between those averages, rather than a per-sample diff as the IMU+IMU2 arrays are often not the same length
# diffThresholdWARN = 0.03
# diffThresholdFAIL = 0.05
# nSamples = 10
# imu1XAverages, imu1YAverages, imu1ZAverages, imu2XAverages, imu2YAverages, imu2ZAverages = ([],[],[],[],[],[])
# imuXDiffAverages, imuYDiffAverages, imuZDiffAverages = ([],[],[])
# maxDiffX, maxDiffY, maxDiffZ = (0,0,0)
# sliceLength1 = len(logdata.channels["IMU"]["GyrX"].dictData.values()) / nSamples
# sliceLength2 = len(logdata.channels["IMU2"]["GyrX"].dictData.values()) / nSamples
# for i in range(0,nSamples):
# imu1XAverages.append(numpy.mean(logdata.channels["IMU"]["GyrX"].dictData.values()[i*sliceLength1:i*sliceLength1+sliceLength1]))
# imu1YAverages.append(numpy.mean(logdata.channels["IMU"]["GyrY"].dictData.values()[i*sliceLength1:i*sliceLength1+sliceLength1]))
# imu1ZAverages.append(numpy.mean(logdata.channels["IMU"]["GyrZ"].dictData.values()[i*sliceLength1:i*sliceLength1+sliceLength1]))
# imu2XAverages.append(numpy.mean(logdata.channels["IMU2"]["GyrX"].dictData.values()[i*sliceLength2:i*sliceLength2+sliceLength2]))
# imu2YAverages.append(numpy.mean(logdata.channels["IMU2"]["GyrY"].dictData.values()[i*sliceLength2:i*sliceLength2+sliceLength2]))
# imu2ZAverages.append(numpy.mean(logdata.channels["IMU2"]["GyrZ"].dictData.values()[i*sliceLength2:i*sliceLength2+sliceLength2]))
# imuXDiffAverages.append(imu2XAverages[-1]-imu1XAverages[-1])
# imuYDiffAverages.append(imu2YAverages[-1]-imu1YAverages[-1])
# imuZDiffAverages.append(imu2ZAverages[-1]-imu1ZAverages[-1])
# if abs(imuXDiffAverages[-1]) > maxDiffX:
# maxDiffX = imuXDiffAverages[-1]
# if abs(imuYDiffAverages[-1]) > maxDiffY:
# maxDiffY = imuYDiffAverages[-1]
# if abs(imuZDiffAverages[-1]) > maxDiffZ:
# maxDiffZ = imuZDiffAverages[-1]
# if max(maxDiffX,maxDiffY,maxDiffZ) > diffThresholdFAIL:
# self.result.status = TestResult.StatusType.FAIL
# self.result.statusMessage = "IMU/IMU2 gyro averages differ by more than %s radians" % diffThresholdFAIL
# elif max(maxDiffX,maxDiffY,maxDiffZ) > diffThresholdWARN:
# self.result.status = TestResult.StatusType.WARN
# self.result.statusMessage = "IMU/IMU2 gyro averages differ by more than %s radians" % diffThresholdWARN
# # pylab.plot(zip(*imuX)[0], zip(*imuX)[1], 'g')
# # pylab.plot(zip(*imu2X)[0], zip(*imu2X)[1], 'r')
# #pylab.plot(range(0,(nSamples*sliceLength1),sliceLength1), imu1ZAverages, 'b')
# print("Gyro averages1X: " + repr(imu1XAverages))
# print("Gyro averages1Y: " + repr(imu1YAverages))
# print("Gyro averages1Z: " + repr(imu1ZAverages) + "\n")
# print("Gyro averages2X: " + repr(imu2XAverages))
# print("Gyro averages2Y: " + repr(imu2YAverages))
# print("Gyro averages2Z: " + repr(imu2ZAverages) + "\n")
# print("Gyro averages diff X: " + repr(imuXDiffAverages))
# print("Gyro averages diff Y: " + repr(imuYDiffAverages))
# print("Gyro averages diff Z: " + repr(imuZDiffAverages))
# # lowpass filter using numpy
# # cutoff = 100
# # fs = 10000.0
# # b,a = scipy.signal.filter_design.butter(5,cutoff/(fs/2))
# # imuXFiltered = scipy.signal.filtfilt(b,a,zip(*imuX)[1])
# # imu2XFiltered = scipy.signal.filtfilt(b,a,zip(*imu2X)[1])
# #pylab.plot(imuXFiltered, 'r')
# # TMP: DISPLAY BEFORE+AFTER plots
# pylab.show()
# # print("imuX average before lowpass filter: %.8f" % logdata.channels["IMU"]["GyrX"].avg())
# # print("imuX average after lowpass filter: %.8f" % numpy.mean(imuXFiltered))
# # print("imu2X average before lowpass filter: %.8f" % logdata.channels["IMU2"]["GyrX"].avg())
# # print("imu2X average after lowpass filter: %.8f" % numpy.mean(imu2XFiltered))
# avg1X = logdata.channels["IMU"]["GyrX"].avg()
# avg1Y = logdata.channels["IMU"]["GyrY"].avg()
# avg1Z = logdata.channels["IMU"]["GyrZ"].avg()
# avg2X = logdata.channels["IMU2"]["GyrX"].avg()
# avg2Y = logdata.channels["IMU2"]["GyrY"].avg()
# avg2Z = logdata.channels["IMU2"]["GyrZ"].avg()
# avgRatioX = (max(avg1X,avg2X) - min(avg1X,avg2X)) / #abs(max(avg1X,avg2X) / min(avg1X,avg2X))
# avgRatioY = abs(max(avg1Y,avg2Y) / min(avg1Y,avg2Y))
# avgRatioZ = abs(max(avg1Z,avg2Z) / min(avg1Z,avg2Z))
# self.result.statusMessage = "IMU gyro avg: %.4f,%.4f,%.4f\nIMU2 gyro avg: %.4f,%.4f,%.4f\nAvg ratio: %.4f,%.4f,%.4f" % (avg1X,avg1Y,avg1Z, avg2X,avg2Y,avg2Z, avgRatioX,avgRatioY,avgRatioZ)