mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-26 10:38:28 -04:00
209 lines
6.5 KiB
Plaintext
209 lines
6.5 KiB
Plaintext
|
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
||
|
|
||
|
//****************************************************************
|
||
|
// Function that controls aileron/rudder, elevator, rudder (if 4 channel control) and throttle to produce desired attitude and airspeed.
|
||
|
//****************************************************************
|
||
|
|
||
|
static void stabilize()
|
||
|
{
|
||
|
float ch1_inf = 1.0;
|
||
|
|
||
|
// Calculate desired servo output for the turn // Wheels Direction
|
||
|
// ---------------------------------------------
|
||
|
g.channel_roll.servo_out = nav_roll;
|
||
|
|
||
|
// Mix Stick input to allow users to override control surfaces
|
||
|
// -----------------------------------------------------------
|
||
|
if ((control_mode < FLY_BY_WIRE_A) ||
|
||
|
(ENABLE_STICK_MIXING == 1 &&
|
||
|
geofence_stickmixing() &&
|
||
|
control_mode > FLY_BY_WIRE_B &&
|
||
|
failsafe == FAILSAFE_NONE)) {
|
||
|
|
||
|
// TODO: use RC_Channel control_mix function?
|
||
|
ch1_inf = (float)g.channel_roll.radio_in - (float)g.channel_roll.radio_trim;
|
||
|
ch1_inf = fabs(ch1_inf);
|
||
|
ch1_inf = min(ch1_inf, 400.0);
|
||
|
ch1_inf = ((400.0 - ch1_inf) /400.0);
|
||
|
|
||
|
// scale the sensor input based on the stick input
|
||
|
// -----------------------------------------------
|
||
|
g.channel_roll.servo_out *= ch1_inf;
|
||
|
|
||
|
// Mix in stick inputs
|
||
|
// -------------------
|
||
|
g.channel_roll.servo_out += g.channel_roll.pwm_to_angle();
|
||
|
|
||
|
//Serial.printf_P(PSTR(" servo_out[CH_ROLL] "));
|
||
|
//Serial.println(servo_out[CH_ROLL],DEC);
|
||
|
|
||
|
}
|
||
|
|
||
|
g.channel_roll.servo_out = g.channel_roll.servo_out * g.turn_gain;
|
||
|
g.channel_rudder.servo_out = g.channel_roll.servo_out;
|
||
|
}
|
||
|
|
||
|
|
||
|
static void crash_checker()
|
||
|
{
|
||
|
if(ahrs.pitch_sensor < -4500){
|
||
|
crash_timer = 255;
|
||
|
}
|
||
|
if(crash_timer > 0)
|
||
|
crash_timer--;
|
||
|
}
|
||
|
|
||
|
static void calc_throttle()
|
||
|
{
|
||
|
int throttle_target = g.throttle_cruise + throttle_nudge + 50;
|
||
|
|
||
|
// Normal airspeed target
|
||
|
target_airspeed = g.airspeed_cruise;
|
||
|
groundspeed_error = target_airspeed - (float)ground_speed;
|
||
|
g.channel_throttle.servo_out = throttle_target + g.pidTeThrottle.get_pid(groundspeed_error, dTnav);
|
||
|
g.channel_throttle.servo_out = constrain(g.channel_throttle.servo_out, g.throttle_min.get(), g.throttle_max.get());
|
||
|
}
|
||
|
|
||
|
/*****************************************
|
||
|
* Calculate desired turn angles (in medium freq loop)
|
||
|
*****************************************/
|
||
|
|
||
|
static void calc_nav_roll()
|
||
|
{
|
||
|
|
||
|
// Adjust gain based on ground speed
|
||
|
nav_gain_scaler = (float)ground_speed / (g.airspeed_cruise * 100.0);
|
||
|
nav_gain_scaler = constrain(nav_gain_scaler, 0.2, 1.4);
|
||
|
|
||
|
// Calculate the required turn of the wheels rover
|
||
|
// ----------------------------------------
|
||
|
|
||
|
// negative error = left turn
|
||
|
// positive error = right turn
|
||
|
|
||
|
nav_roll = g.pidNavRoll.get_pid(bearing_error, dTnav, nav_gain_scaler); //returns desired bank angle in degrees*100
|
||
|
nav_roll = constrain(nav_roll, -g.roll_limit.get(), g.roll_limit.get());
|
||
|
|
||
|
}
|
||
|
|
||
|
/*****************************************
|
||
|
* Roll servo slew limit
|
||
|
*****************************************/
|
||
|
/*
|
||
|
float roll_slew_limit(float servo)
|
||
|
{
|
||
|
static float last;
|
||
|
float temp = constrain(servo, last-ROLL_SLEW_LIMIT * delta_ms_fast_loop/1000.f, last + ROLL_SLEW_LIMIT * delta_ms_fast_loop/1000.f);
|
||
|
last = servo;
|
||
|
return temp;
|
||
|
}*/
|
||
|
|
||
|
/*****************************************
|
||
|
* Throttle slew limit
|
||
|
*****************************************/
|
||
|
static void throttle_slew_limit()
|
||
|
{
|
||
|
static int last = 1000;
|
||
|
if(g.throttle_slewrate) { // if slew limit rate is set to zero then do not slew limit
|
||
|
|
||
|
float temp = g.throttle_slewrate * G_Dt * 10.f; // * 10 to scale % to pwm range of 1000 to 2000
|
||
|
g.channel_throttle.radio_out = constrain(g.channel_throttle.radio_out, last - (int)temp, last + (int)temp);
|
||
|
last = g.channel_throttle.radio_out;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
// Zeros out navigation Integrators if we are changing mode, have passed a waypoint, etc.
|
||
|
// Keeps outdated data out of our calculations
|
||
|
static void reset_I(void)
|
||
|
{
|
||
|
g.pidNavRoll.reset_I();
|
||
|
g.pidTeThrottle.reset_I();
|
||
|
// g.pidAltitudeThrottle.reset_I();
|
||
|
}
|
||
|
|
||
|
/*****************************************
|
||
|
* Set the flight control servos based on the current calculated values
|
||
|
*****************************************/
|
||
|
static void set_servos(void)
|
||
|
{
|
||
|
int flapSpeedSource = 0;
|
||
|
|
||
|
// vectorize the rc channels
|
||
|
RC_Channel_aux* rc_array[NUM_CHANNELS];
|
||
|
rc_array[CH_1] = NULL;
|
||
|
rc_array[CH_2] = NULL;
|
||
|
rc_array[CH_3] = NULL;
|
||
|
rc_array[CH_4] = NULL;
|
||
|
rc_array[CH_5] = &g.rc_5;
|
||
|
rc_array[CH_6] = &g.rc_6;
|
||
|
rc_array[CH_7] = &g.rc_7;
|
||
|
rc_array[CH_8] = &g.rc_8;
|
||
|
|
||
|
if((control_mode == MANUAL) || (control_mode == STABILIZE)){
|
||
|
// do a direct pass through of radio values
|
||
|
g.channel_roll.radio_out = g.channel_roll.radio_in;
|
||
|
g.channel_pitch.radio_out = g.channel_pitch.radio_in;
|
||
|
|
||
|
g.channel_throttle.radio_out = g.channel_throttle.radio_in;
|
||
|
g.channel_rudder.radio_out = g.channel_roll.radio_in;
|
||
|
} else {
|
||
|
|
||
|
g.channel_roll.calc_pwm();
|
||
|
g.channel_pitch.calc_pwm();
|
||
|
g.channel_rudder.calc_pwm();
|
||
|
|
||
|
g.channel_throttle.radio_out = g.channel_throttle.radio_in;
|
||
|
|
||
|
// convert 0 to 100% into PWM
|
||
|
g.channel_throttle.servo_out = constrain(g.channel_throttle.servo_out, g.throttle_min.get(), g.throttle_max.get());
|
||
|
|
||
|
// g.channel_throttle.calc_pwm();
|
||
|
|
||
|
/* TO DO - fix this for RC_Channel library
|
||
|
#if THROTTLE_REVERSE == 1
|
||
|
radio_out[CH_THROTTLE] = radio_max(CH_THROTTLE) + radio_min(CH_THROTTLE) - radio_out[CH_THROTTLE];
|
||
|
#endif
|
||
|
*/
|
||
|
}
|
||
|
if (control_mode >= FLY_BY_WIRE_B) {
|
||
|
g.channel_throttle.calc_pwm();
|
||
|
/* only do throttle slew limiting in modes where throttle
|
||
|
control is automatic */
|
||
|
throttle_slew_limit();
|
||
|
}
|
||
|
|
||
|
|
||
|
#if HIL_MODE == HIL_MODE_DISABLED || HIL_SERVOS
|
||
|
// send values to the PWM timers for output
|
||
|
// ----------------------------------------
|
||
|
APM_RC.OutputCh(CH_1, g.channel_roll.radio_out); // send to Servos
|
||
|
APM_RC.OutputCh(CH_2, g.channel_pitch.radio_out); // send to Servos
|
||
|
APM_RC.OutputCh(CH_3, g.channel_throttle.radio_out); // send to Servos
|
||
|
APM_RC.OutputCh(CH_4, g.channel_rudder.radio_out); // send to Servos
|
||
|
// Route configurable aux. functions to their respective servos
|
||
|
|
||
|
g.rc_5.output_ch(CH_5);
|
||
|
g.rc_6.output_ch(CH_6);
|
||
|
g.rc_7.output_ch(CH_7);
|
||
|
g.rc_8.output_ch(CH_8);
|
||
|
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
static void demo_servos(byte i) {
|
||
|
|
||
|
while(i > 0){
|
||
|
gcs_send_text_P(SEVERITY_LOW,PSTR("Demo Servos!"));
|
||
|
#if HIL_MODE == HIL_MODE_DISABLED || HIL_SERVOS
|
||
|
APM_RC.OutputCh(1, 1400);
|
||
|
mavlink_delay(400);
|
||
|
APM_RC.OutputCh(1, 1600);
|
||
|
mavlink_delay(200);
|
||
|
APM_RC.OutputCh(1, 1500);
|
||
|
#endif
|
||
|
mavlink_delay(400);
|
||
|
i--;
|
||
|
}
|
||
|
}
|