2018-04-25 20:10:27 -03:00
|
|
|
/*
|
|
|
|
* This file is free software: you can redistribute it and/or modify it
|
|
|
|
* under the terms of the GNU General Public License as published by the
|
|
|
|
* Free Software Foundation, either version 3 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This file is distributed in the hope that it will be useful, but
|
|
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
|
|
* See the GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License along
|
|
|
|
* with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "stm32_util.h"
|
2018-05-30 01:22:49 -03:00
|
|
|
#include <stdint.h>
|
2018-06-01 07:51:59 -03:00
|
|
|
#include <stdio.h>
|
2018-06-02 00:27:02 -03:00
|
|
|
#include <string.h>
|
2018-06-03 21:55:34 -03:00
|
|
|
#include <stm32_dma.h>
|
2018-06-14 02:31:33 -03:00
|
|
|
#include <hrt.h>
|
|
|
|
|
|
|
|
static int64_t utc_time_offset;
|
2018-04-25 20:10:27 -03:00
|
|
|
|
2018-06-02 10:19:46 -03:00
|
|
|
/*
|
|
|
|
setup the timer capture digital filter for a channel
|
|
|
|
*/
|
2018-04-25 20:10:27 -03:00
|
|
|
void stm32_timer_set_input_filter(stm32_tim_t *tim, uint8_t channel, uint8_t filter_mode)
|
|
|
|
{
|
|
|
|
switch (channel) {
|
|
|
|
case 0:
|
|
|
|
tim->CCMR1 |= STM32_TIM_CCMR1_IC1F(filter_mode);
|
|
|
|
break;
|
|
|
|
case 1:
|
|
|
|
tim->CCMR1 |= STM32_TIM_CCMR1_IC2F(filter_mode);
|
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
tim->CCMR2 |= STM32_TIM_CCMR2_IC3F(filter_mode);
|
|
|
|
break;
|
|
|
|
case 3:
|
|
|
|
tim->CCMR2 |= STM32_TIM_CCMR2_IC4F(filter_mode);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
2018-05-30 01:22:49 -03:00
|
|
|
|
2018-06-02 10:19:46 -03:00
|
|
|
/*
|
|
|
|
set the input source of a timer channel
|
|
|
|
*/
|
|
|
|
void stm32_timer_set_channel_input(stm32_tim_t *tim, uint8_t channel, uint8_t input_source)
|
|
|
|
{
|
|
|
|
switch (channel) {
|
|
|
|
case 0:
|
|
|
|
tim->CCER &= ~STM32_TIM_CCER_CC1E;
|
|
|
|
tim->CCMR1 &= ~STM32_TIM_CCMR1_CC1S_MASK;
|
|
|
|
tim->CCMR1 |= STM32_TIM_CCMR1_CC1S(input_source);
|
|
|
|
tim->CCER |= STM32_TIM_CCER_CC1E;
|
|
|
|
break;
|
|
|
|
case 1:
|
|
|
|
tim->CCER &= ~STM32_TIM_CCER_CC2E;
|
|
|
|
tim->CCMR1 &= ~STM32_TIM_CCMR1_CC2S_MASK;
|
|
|
|
tim->CCMR1 |= STM32_TIM_CCMR1_CC2S(input_source);
|
|
|
|
tim->CCER |= STM32_TIM_CCER_CC2E;
|
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
tim->CCER &= ~STM32_TIM_CCER_CC3E;
|
|
|
|
tim->CCMR2 &= ~STM32_TIM_CCMR2_CC3S_MASK;
|
|
|
|
tim->CCMR2 |= STM32_TIM_CCMR2_CC3S(input_source);
|
|
|
|
tim->CCER |= STM32_TIM_CCER_CC3E;
|
|
|
|
break;
|
|
|
|
case 3:
|
|
|
|
tim->CCER &= ~STM32_TIM_CCER_CC4E;
|
|
|
|
tim->CCMR2 &= ~STM32_TIM_CCMR2_CC4S_MASK;
|
|
|
|
tim->CCMR2 |= STM32_TIM_CCMR2_CC4S(input_source);
|
|
|
|
tim->CCER |= STM32_TIM_CCER_CC4E;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-05-30 07:15:43 -03:00
|
|
|
#if CH_DBG_ENABLE_STACK_CHECK == TRUE
|
|
|
|
void show_stack_usage(void)
|
|
|
|
{
|
|
|
|
thread_t *tp;
|
|
|
|
|
|
|
|
tp = chRegFirstThread();
|
|
|
|
do {
|
|
|
|
uint32_t stklimit = (uint32_t)tp->wabase;
|
|
|
|
uint8_t *p = (uint8_t *)tp->wabase;
|
|
|
|
while (*p == CH_DBG_STACK_FILL_VALUE) {
|
|
|
|
p++;
|
|
|
|
}
|
|
|
|
uint32_t stack_left = ((uint32_t)p) - stklimit;
|
2018-06-01 07:51:59 -03:00
|
|
|
printf("%s %u\n", tp->name, (unsigned)stack_left);
|
2018-05-30 07:15:43 -03:00
|
|
|
tp = chRegNextThread(tp);
|
|
|
|
} while (tp != NULL);
|
|
|
|
}
|
|
|
|
#endif
|
2018-06-03 21:55:34 -03:00
|
|
|
|
|
|
|
/*
|
|
|
|
flush all memory. Used in chSysHalt()
|
|
|
|
*/
|
|
|
|
void memory_flush_all(void)
|
|
|
|
{
|
|
|
|
#if defined(STM32F7) && STM32_DMA_CACHE_HANDLING == TRUE
|
|
|
|
dmaBufferFlush(HAL_RAM_BASE_ADDRESS, HAL_RAM_SIZE_KB * 1024U);
|
|
|
|
#endif
|
|
|
|
}
|
2018-06-14 02:31:33 -03:00
|
|
|
|
|
|
|
/*
|
|
|
|
set the utc time
|
|
|
|
*/
|
|
|
|
void stm32_set_utc_usec(uint64_t time_utc_usec)
|
|
|
|
{
|
|
|
|
uint64_t now = hrt_micros();
|
|
|
|
if (now <= time_utc_usec) {
|
|
|
|
utc_time_offset = time_utc_usec - now;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
get system clock in UTC microseconds
|
|
|
|
*/
|
|
|
|
uint64_t stm32_get_utc_usec()
|
|
|
|
{
|
|
|
|
return hrt_micros() + utc_time_offset;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct utc_tm {
|
|
|
|
uint8_t tm_year; // since 1900
|
|
|
|
uint8_t tm_mon; // zero based
|
|
|
|
uint8_t tm_mday; // zero based
|
|
|
|
uint8_t tm_hour;
|
|
|
|
uint8_t tm_min;
|
|
|
|
uint8_t tm_sec;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
return true if a year is a leap year
|
|
|
|
*/
|
|
|
|
static bool is_leap(uint32_t y)
|
|
|
|
{
|
|
|
|
y += 1900;
|
|
|
|
return (y % 4) == 0 && ((y % 100) != 0 || (y % 400) == 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static const uint8_t ndays[2][12] ={
|
|
|
|
{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
|
|
|
|
{31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}};
|
|
|
|
|
|
|
|
/*
|
|
|
|
parse a seconds since 1970 into a utc_tm structure
|
|
|
|
code based on _der_gmtime from samba
|
|
|
|
*/
|
|
|
|
static void parse_utc_seconds(uint64_t utc_sec, struct utc_tm *tm)
|
|
|
|
{
|
|
|
|
uint32_t secday = utc_sec % (3600U * 24U);
|
|
|
|
uint32_t days = utc_sec / (3600U * 24U);
|
|
|
|
|
|
|
|
memset(tm, 0, sizeof(*tm));
|
|
|
|
|
|
|
|
tm->tm_sec = secday % 60U;
|
|
|
|
tm->tm_min = (secday % 3600U) / 60U;
|
|
|
|
tm->tm_hour = secday / 3600U;
|
|
|
|
tm->tm_year = 70;
|
|
|
|
|
|
|
|
if (days > (2000 * 365)) {
|
|
|
|
// don't look for dates too far into the future
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
while (true) {
|
|
|
|
unsigned dayinyear = (is_leap(tm->tm_year) ? 366 : 365);
|
|
|
|
if (days < dayinyear) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
tm->tm_year += 1;
|
|
|
|
days -= dayinyear;
|
|
|
|
}
|
|
|
|
tm->tm_mon = 0;
|
|
|
|
|
|
|
|
while (true) {
|
|
|
|
unsigned daysinmonth = ndays[is_leap(tm->tm_year)?1:0][tm->tm_mon];
|
|
|
|
if (days < daysinmonth) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
days -= daysinmonth;
|
|
|
|
tm->tm_mon++;
|
|
|
|
}
|
|
|
|
tm->tm_mday = days + 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
get time for fat filesystem. This is based on
|
|
|
|
rtcConvertDateTimeToFAT from the ChibiOS RTC driver. We don't use
|
|
|
|
the hw RTC clock as it is very inaccurate
|
|
|
|
*/
|
|
|
|
uint32_t get_fattime()
|
|
|
|
{
|
|
|
|
if (utc_time_offset == 0) {
|
|
|
|
// return a fixed time
|
|
|
|
return ((uint32_t)0 | (1 << 16)) | (1 << 21);
|
|
|
|
}
|
|
|
|
uint64_t utc_usec = stm32_get_utc_usec();
|
|
|
|
uint64_t utc_sec = utc_usec / 1000000UL;
|
|
|
|
struct utc_tm tm;
|
|
|
|
|
|
|
|
parse_utc_seconds(utc_sec, &tm);
|
|
|
|
|
|
|
|
uint32_t fattime;
|
|
|
|
|
|
|
|
fattime = tm.tm_sec >> 1U;
|
|
|
|
fattime |= tm.tm_min << 5U;
|
|
|
|
fattime |= tm.tm_hour << 11U;
|
|
|
|
fattime |= tm.tm_mday << 16U;
|
|
|
|
fattime |= (tm.tm_mon+1) << 21U;
|
|
|
|
fattime |= (uint32_t)((tm.tm_year-80) << 25U);
|
|
|
|
|
|
|
|
return fattime;
|
|
|
|
}
|
2018-06-27 05:46:34 -03:00
|
|
|
|
|
|
|
// get RTC backup register 0
|
|
|
|
static uint32_t get_rtc_backup0(void)
|
|
|
|
{
|
|
|
|
return RTC->BKP0R;
|
|
|
|
}
|
|
|
|
|
|
|
|
// set RTC backup register 0
|
|
|
|
static void set_rtc_backup0(uint32_t v)
|
|
|
|
{
|
|
|
|
if ((RCC->BDCR & RCC_BDCR_RTCEN) == 0) {
|
|
|
|
RCC->BDCR |= STM32_RTCSEL;
|
|
|
|
RCC->BDCR |= RCC_BDCR_RTCEN;
|
|
|
|
}
|
|
|
|
#ifdef PWR_CR_DBP
|
|
|
|
PWR->CR |= PWR_CR_DBP;
|
|
|
|
#else
|
|
|
|
PWR->CR1 |= PWR_CR1_DBP;
|
|
|
|
#endif
|
|
|
|
RTC->BKP0R = v;
|
|
|
|
}
|
|
|
|
|
|
|
|
// see if RTC registers is setup for a fast reboot
|
|
|
|
enum rtc_boot_magic check_fast_reboot(void)
|
|
|
|
{
|
|
|
|
return (enum rtc_boot_magic)get_rtc_backup0();
|
|
|
|
}
|
|
|
|
|
|
|
|
// set RTC register for a fast reboot
|
|
|
|
void set_fast_reboot(enum rtc_boot_magic v)
|
|
|
|
{
|
|
|
|
set_rtc_backup0(v);
|
|
|
|
}
|