ardupilot/libraries/AP_Controller/AP_Controller.h

211 lines
6.1 KiB
C
Raw Normal View History

/*
* AP_Controller.h
* Copyright (C) James Goppert 2010 <james.goppert@gmail.com>
*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef AP_Controller_H
#define AP_Controller_H
#include <AP_Common.h>
#include <AP_Vector.h>
#include <AP_Var.h>
#include <AP_RcChannel.h>
#include <APM_RC.h>
#define APVarPtr2Float(var) (*(AP_Meta_class::meta_cast<AP_Float>((AP_Var *)var)))
/// Block
class Block
{
public:
Block() :
_input(), _output()
{
}
virtual void update(const float & dt = 0) = 0;
virtual void connect( Block * block)
{
}
const char * getName() { return _name; }
const Vector < AP_Var * > & getOutput() const { return _output; }
protected:
const char * _name;
Vector< const AP_Var * > _input;
Vector< AP_Var * > _output;
};
/// Servo Block
class ToServo: public Block
{
public:
ToServo(AP_RcChannel * ch) : _ch(ch)
{
}
virtual void connect(Block * block)
{
if (block->getOutput().getSize() > 0)
_input.push_back(block->getOutput()[0]);
}
virtual void update(const float & dt = 0)
{
if (_input.getSize() > 0)
_ch->setNormalized(APVarPtr2Float(_input[0]));
}
private:
float _position;
AP_RcChannel * _ch;
};
/// SumGain
class SumGain : public Block
{
public:
/// Constructor that allows 1-8 sum gain pairs, more
/// can be added if necessary
SumGain(
AP_Var & var1 = AP_Float_zero, AP_Var & gain1 = AP_Float_zero,
AP_Var & var2 = AP_Float_zero, AP_Var & gain2 = AP_Float_zero,
AP_Var & var3 = AP_Float_zero, AP_Var & gain3 = AP_Float_zero,
AP_Var & var4 = AP_Float_zero, AP_Var & gain4 = AP_Float_zero,
AP_Var & var5 = AP_Float_zero, AP_Var & gain5 = AP_Float_zero,
AP_Var & var6 = AP_Float_zero, AP_Var & gain6 = AP_Float_zero,
AP_Var & var7 = AP_Float_zero, AP_Var & gain7 = AP_Float_zero,
AP_Var & var8 = AP_Float_zero, AP_Var & gain8 = AP_Float_zero)
{
if ( (&var1 == &AP_Float_zero) || (&gain1 == &AP_Float_zero) ) add(var1,gain1);
if ( (&var2 == &AP_Float_zero) || (&gain2 == &AP_Float_zero) ) add(var2,gain2);
if ( (&var3 == &AP_Float_zero) || (&gain3 == &AP_Float_zero) ) add(var3,gain3);
if ( (&var4 == &AP_Float_zero) || (&gain4 == &AP_Float_zero) ) add(var4,gain4);
if ( (&var5 == &AP_Float_zero) || (&gain5 == &AP_Float_zero) ) add(var5,gain5);
if ( (&var6 == &AP_Float_zero) || (&gain6 == &AP_Float_zero) ) add(var6,gain6);
if ( (&var7 == &AP_Float_zero) || (&gain7 == &AP_Float_zero) ) add(var7,gain7);
if ( (&var8 == &AP_Float_zero) || (&gain8 == &AP_Float_zero) ) add(var8,gain8);
// create output
_output.push_back(new AP_Float(0));
}
void add(AP_Var & var, AP_Var & gain)
{
_input.push_back(&var);
_gain.push_back(&gain);
}
virtual void update(const float & dt = 0)
{
if (_output.getSize() < 1) return;
_output[0]=0;
for (int i=0;i<_input.getSize();i++)
{
*_output[0] = APVarPtr2Float(_output[i]) * APVarPtr2Float(_gain[i]) ;
}
}
private:
Vector< AP_Var * > _gain;
};
/// PID block
class Pid : public Block, public AP_Var_group
{
public:
Pid(AP_Var::Key key, const prog_char * name,
float kP = 0.0,
float kI = 0.0,
float kD = 0.0,
float iMax = 0.0,
uint8_t dFcut = 20.0
) :
AP_Var_group(key,name),
_kP(this,1,kP,PSTR("P")),
_kI(this,2,kI,PSTR("I")),
_kD(this,3,kD,PSTR("D")),
_iMax(this,4,iMax,PSTR("IMAX")),
_fCut(this,5,dFcut,PSTR("FCUT"))
{
_output.push_back(new AP_Float(0));
}
virtual void connect(Block * block)
{
if (!block) return;
if (block->getOutput().getSize() > 0)
_input.push_back(block->getOutput()[0]);
}
virtual void update(const float & dt = 0)
{
if (_output.getSize() < 1 || !_input[0] || !_output[0]) return;
// derivative
float RC = 1/(2*M_PI*_fCut); // low pass filter
_eD = _eD + ( ((_e - APVarPtr2Float(_input[0])))/dt - _eD ) * (dt / (dt + RC));
// proportional, note must come after derivative
// because derivatve uses _e as previous value
_e = APVarPtr2Float(_input[0]);
// integral
_eI += _e*dt;
// pid sum
*_output[0] = _kP*_e + _kI*_eI + _kD*_eD;
Serial.println("debug");
Serial.println(_kP);
Serial.println(_kI);
Serial.println(_kD);
Serial.println(_e);
Serial.println(_eI);
Serial.println(_eD);
Serial.println(APVarPtr2Float(_output[0]));
}
private:
float _e; /// input
float _eI; /// integral of input
float _eD; /// derivative of input
AP_Float _kP; /// proportional gain
AP_Float _kI; /// integral gain
AP_Float _kD; /// derivative gain
AP_Float _iMax; /// integrator saturation
AP_Uint8 _fCut; /// derivative low-pass cut freq (Hz)
};
/// Controller class
class AP_Controller
{
public:
void addBlock(Block * block)
{
if (_blocks.getSize() > 0)
_blocks[_blocks.getSize()-1]->connect(block);
_blocks.push_back(block);
}
void update(const double dt=0)
{
for (int i=0;i<_blocks.getSize();i++)
{
if (!_blocks[i]) continue;
_blocks[i]->update(dt);
}
}
private:
Vector<Block * > _blocks;
};
#endif // AP_Controller_H
// vim:ts=4:sw=4:expandtab