ardupilot/Tools/autotest/pysim/multicopter.py

185 lines
6.2 KiB
Python
Raw Normal View History

#!/usr/bin/env python
from aircraft import Aircraft
import euclid, util, time, math
class Motor(object):
def __init__(self, angle, clockwise, servo):
self.angle = angle # angle in degrees from front
self.clockwise = clockwise # clockwise == true, anti-clockwise == false
self.servo = servo # what servo output drives this motor
def build_motors(frame):
'''build a motors list given a frame type'''
2012-01-04 06:45:58 -04:00
frame = frame.lower()
if frame in [ 'quad', '+', 'x' ]:
motors = [
Motor(90, False, 1),
Motor(270, False, 2),
Motor(0, True, 3),
Motor(180, True, 4),
]
2012-01-04 06:45:58 -04:00
if frame in [ 'x', 'quadx' ]:
for i in range(4):
motors[i].angle -= 45.0
2012-01-04 06:45:58 -04:00
elif frame in ["y6"]:
motors = [
Motor(60, False, 1),
Motor(60, True, 7),
Motor(180, True, 4),
Motor(180, False, 8),
Motor(-60, True, 2),
Motor(-60, False, 3),
]
elif frame in ["hexa", "hexa+"]:
motors = [
Motor(0, True, 1),
Motor(60, False, 4),
Motor(120, True, 8),
Motor(180, False, 2),
Motor(240, True, 3),
Motor(300, False, 7),
]
elif frame in ["hexax"]:
motors = [
Motor(30, False, 7),
Motor(90, True, 1),
Motor(150, False, 4),
Motor(210, True, 8),
Motor(270, False, 2),
Motor(330, True, 3),
]
2012-01-04 07:15:17 -04:00
elif frame in ["octa", "octa+", "octax" ]:
motors = [
Motor(0, True, 1),
Motor(180, True, 2),
Motor(45, False, 3),
Motor(135, False, 4),
Motor(-45, False, 7),
Motor(-135, False, 8),
Motor(270, True, 10),
Motor(90, True, 11),
]
2012-01-04 07:15:17 -04:00
if frame == 'octax':
for i in range(8):
motors[i].angle += 22.5
else:
raise RuntimeError("Unknown multicopter frame type '%s'" % frame)
return motors
class MultiCopter(Aircraft):
'''a MultiCopter'''
def __init__(self, frame='+',
hover_throttle=0.37,
terminal_velocity=30.0,
frame_height=0.1,
mass=1.0):
Aircraft.__init__(self)
self.motors = build_motors(frame)
self.motor_speed = [ 0.0 ] * len(self.motors)
self.mass = mass # Kg
self.hover_throttle = hover_throttle
self.terminal_velocity = terminal_velocity
2011-12-12 07:08:10 -04:00
self.terminal_rotation_rate = 4*360.0
self.frame_height = frame_height
# scaling from total motor power to Newtons. Allows the copter
# to hover against gravity when each motor is at hover_throttle
self.thrust_scale = (self.mass * self.gravity) / (len(self.motors) * self.hover_throttle)
self.last_time = time.time()
def update(self, servos):
for i in range(0, len(self.motors)):
servo = servos[self.motors[i].servo-1]
if servo <= 0.0:
self.motor_speed[i] = 0
else:
self.motor_speed[i] = servo
m = self.motor_speed
# how much time has passed?
t = time.time()
delta_time = t - self.last_time
self.last_time = t
# rotational acceleration, in degrees/s/s, in body frame
roll_accel = 0.0
pitch_accel = 0.0
yaw_accel = 0.0
thrust = 0.0
for i in range(len(self.motors)):
roll_accel += -5000.0 * math.sin(math.radians(self.motors[i].angle)) * m[i]
pitch_accel += 5000.0 * math.cos(math.radians(self.motors[i].angle)) * m[i]
if self.motors[i].clockwise:
yaw_accel -= m[i] * 400.0
else:
yaw_accel += m[i] * 400.0
thrust += m[i] * self.thrust_scale # newtons
2011-12-12 07:08:10 -04:00
# rotational resistance
roll_accel -= (self.pDeg / self.terminal_rotation_rate) * 5000.0
pitch_accel -= (self.qDeg / self.terminal_rotation_rate) * 5000.0
yaw_accel -= (self.rDeg / self.terminal_rotation_rate) * 400.0
# update rotational rates in body frame
self.pDeg += roll_accel * delta_time
self.qDeg += pitch_accel * delta_time
self.rDeg += yaw_accel * delta_time
# calculate rates in earth frame
(self.roll_rate,
self.pitch_rate,
self.yaw_rate) = util.BodyRatesToEarthRates(self.roll, self.pitch, self.yaw,
self.pDeg, self.qDeg, self.rDeg)
# update rotation
self.roll += self.roll_rate * delta_time
self.pitch += self.pitch_rate * delta_time
self.yaw += self.yaw_rate * delta_time
# air resistance
air_resistance = - self.velocity * (self.gravity/self.terminal_velocity)
# normalise rotations
self.normalise()
accel = thrust / self.mass
accel3D = util.RPY_to_XYZ(self.roll, self.pitch, self.yaw, accel)
accel3D += euclid.Vector3(0, 0, -self.gravity)
accel3D += air_resistance
# add in some wind
accel3D += self.wind.accel(self.velocity)
# new velocity vector
self.velocity += accel3D * delta_time
self.accel = accel3D
# new position vector
old_position = self.position.copy()
self.position += self.velocity * delta_time
# constrain height to the ground
if self.position.z + self.home_altitude < self.ground_level + self.frame_height:
if old_position.z + self.home_altitude > self.ground_level + self.frame_height:
print("Hit ground at %f m/s" % (-self.velocity.z))
self.velocity = euclid.Vector3(0, 0, 0)
self.roll_rate = 0
self.pitch_rate = 0
self.yaw_rate = 0
self.roll = 0
self.pitch = 0
self.accel = euclid.Vector3(0, 0, 0)
self.position = euclid.Vector3(self.position.x, self.position.y,
self.ground_level + self.frame_height - self.home_altitude)
# update lat/lon/altitude
self.update_position()