2011-12-28 05:31:36 -04:00
|
|
|
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
2011-02-14 00:25:20 -04:00
|
|
|
#include "Compass.h"
|
|
|
|
|
2012-02-11 07:53:30 -04:00
|
|
|
const AP_Param::GroupInfo Compass::var_info[] PROGMEM = {
|
2012-02-12 18:55:13 -04:00
|
|
|
AP_GROUPINFO("ORIENT", 0, Compass, _orientation_matrix),
|
|
|
|
AP_GROUPINFO("OFS", 1, Compass, _offset),
|
|
|
|
AP_GROUPINFO("DEC", 2, Compass, _declination),
|
2012-02-12 03:23:19 -04:00
|
|
|
AP_GROUPEND
|
2012-02-11 07:53:30 -04:00
|
|
|
};
|
|
|
|
|
2011-02-14 00:25:20 -04:00
|
|
|
// Default constructor.
|
|
|
|
// Note that the Vector/Matrix constructors already implicitly zero
|
|
|
|
// their values.
|
|
|
|
//
|
2012-02-11 07:53:30 -04:00
|
|
|
Compass::Compass(void) :
|
|
|
|
_declination (0.0),
|
2011-06-28 13:30:42 -03:00
|
|
|
_null_init_done(false),
|
2012-01-12 17:43:39 -04:00
|
|
|
_null_enable(false),
|
2011-06-28 13:30:42 -03:00
|
|
|
product_id(AP_COMPASS_TYPE_UNKNOWN)
|
2011-02-14 00:25:20 -04:00
|
|
|
{
|
|
|
|
// Default the orientation matrix to none - will be overridden at group load time
|
|
|
|
// if an orientation has previously been saved.
|
|
|
|
_orientation_matrix.set(ROTATION_NONE);
|
|
|
|
}
|
|
|
|
|
2011-02-19 23:46:18 -04:00
|
|
|
//_group
|
|
|
|
|
2011-02-14 00:25:20 -04:00
|
|
|
// Default init method, just returns success.
|
|
|
|
//
|
|
|
|
bool
|
|
|
|
Compass::init()
|
|
|
|
{
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
Compass::set_orientation(const Matrix3f &rotation_matrix)
|
|
|
|
{
|
|
|
|
_orientation_matrix.set_and_save(rotation_matrix);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
Compass::set_offsets(const Vector3f &offsets)
|
|
|
|
{
|
|
|
|
_offset.set(offsets);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
Compass::save_offsets()
|
|
|
|
{
|
|
|
|
_offset.save();
|
|
|
|
}
|
|
|
|
|
|
|
|
Vector3f &
|
|
|
|
Compass::get_offsets()
|
|
|
|
{
|
2012-02-11 07:53:30 -04:00
|
|
|
return _offset;
|
2011-02-14 00:25:20 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
Compass::set_declination(float radians)
|
|
|
|
{
|
|
|
|
_declination.set_and_save(radians);
|
|
|
|
}
|
|
|
|
|
2011-02-18 23:57:53 -04:00
|
|
|
float
|
|
|
|
Compass::get_declination()
|
|
|
|
{
|
|
|
|
return _declination.get();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2011-02-14 00:25:20 -04:00
|
|
|
void
|
|
|
|
Compass::calculate(float roll, float pitch)
|
|
|
|
{
|
2011-05-08 15:15:29 -03:00
|
|
|
// Note - This function implementation is deprecated
|
|
|
|
// The alternate implementation of this function using the dcm matrix is preferred
|
2011-02-14 00:25:20 -04:00
|
|
|
float headX;
|
|
|
|
float headY;
|
|
|
|
float cos_roll;
|
|
|
|
float sin_roll;
|
|
|
|
float cos_pitch;
|
|
|
|
float sin_pitch;
|
2011-07-08 00:56:04 -03:00
|
|
|
cos_roll = cos(roll);
|
2011-05-08 15:15:29 -03:00
|
|
|
sin_roll = sin(roll);
|
2011-02-14 00:25:20 -04:00
|
|
|
cos_pitch = cos(pitch);
|
2011-05-08 15:15:29 -03:00
|
|
|
sin_pitch = sin(pitch);
|
|
|
|
|
|
|
|
// Tilt compensated magnetic field X component:
|
|
|
|
headX = mag_x*cos_pitch + mag_y*sin_roll*sin_pitch + mag_z*cos_roll*sin_pitch;
|
|
|
|
// Tilt compensated magnetic field Y component:
|
|
|
|
headY = mag_y*cos_roll - mag_z*sin_roll;
|
|
|
|
// magnetic heading
|
|
|
|
heading = atan2(-headY,headX);
|
|
|
|
|
|
|
|
// Declination correction (if supplied)
|
|
|
|
if( fabs(_declination) > 0.0 )
|
|
|
|
{
|
|
|
|
heading = heading + _declination;
|
|
|
|
if (heading > M_PI) // Angle normalization (-180 deg, 180 deg)
|
|
|
|
heading -= (2.0 * M_PI);
|
|
|
|
else if (heading < -M_PI)
|
|
|
|
heading += (2.0 * M_PI);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Optimization for external DCM use. Calculate normalized components
|
|
|
|
heading_x = cos(heading);
|
|
|
|
heading_y = sin(heading);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
Compass::calculate(const Matrix3f &dcm_matrix)
|
|
|
|
{
|
|
|
|
float headX;
|
|
|
|
float headY;
|
2012-02-23 19:42:03 -04:00
|
|
|
float cos_pitch = safe_sqrt(1-(dcm_matrix.c.x*dcm_matrix.c.x));
|
2011-05-08 15:15:29 -03:00
|
|
|
// sin(pitch) = - dcm_matrix(3,1)
|
|
|
|
// cos(pitch)*sin(roll) = - dcm_matrix(3,2)
|
|
|
|
// cos(pitch)*cos(roll) = - dcm_matrix(3,3)
|
2011-02-14 00:25:20 -04:00
|
|
|
|
2012-02-23 19:42:03 -04:00
|
|
|
if (cos_pitch == 0.0) {
|
|
|
|
// we are pointing straight up or down so don't update our
|
|
|
|
// heading using the compass. Wait for the next iteration when
|
|
|
|
// we hopefully will have valid values again.
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2011-02-14 00:25:20 -04:00
|
|
|
// Tilt compensated magnetic field X component:
|
2011-05-08 15:15:29 -03:00
|
|
|
headX = mag_x*cos_pitch - mag_y*dcm_matrix.c.y*dcm_matrix.c.x/cos_pitch - mag_z*dcm_matrix.c.z*dcm_matrix.c.x/cos_pitch;
|
2011-02-14 00:25:20 -04:00
|
|
|
// Tilt compensated magnetic field Y component:
|
2011-05-08 15:15:29 -03:00
|
|
|
headY = mag_y*dcm_matrix.c.z/cos_pitch - mag_z*dcm_matrix.c.y/cos_pitch;
|
2011-02-14 00:25:20 -04:00
|
|
|
// magnetic heading
|
2011-07-08 00:56:04 -03:00
|
|
|
// 6/4/11 - added constrain to keep bad values from ruining DCM Yaw - Jason S.
|
|
|
|
heading = constrain(atan2(-headY,headX), -3.15, 3.15);
|
2011-02-14 00:25:20 -04:00
|
|
|
|
|
|
|
// Declination correction (if supplied)
|
|
|
|
if( fabs(_declination) > 0.0 )
|
|
|
|
{
|
|
|
|
heading = heading + _declination;
|
|
|
|
if (heading > M_PI) // Angle normalization (-180 deg, 180 deg)
|
|
|
|
heading -= (2.0 * M_PI);
|
|
|
|
else if (heading < -M_PI)
|
|
|
|
heading += (2.0 * M_PI);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Optimization for external DCM use. Calculate normalized components
|
|
|
|
heading_x = cos(heading);
|
|
|
|
heading_y = sin(heading);
|
2012-02-23 19:42:03 -04:00
|
|
|
|
|
|
|
#if 0
|
|
|
|
if (isnan(heading_x) || isnan(heading_y)) {
|
|
|
|
Serial.printf("COMPASS: c.x %f c.y %f c.z %f cos_pitch %f mag_x %d mag_y %d mag_z %d headX %f headY %f heading %f heading_x %f heading_y %f\n",
|
|
|
|
dcm_matrix.c.x,
|
|
|
|
dcm_matrix.c.y,
|
|
|
|
dcm_matrix.c.x,
|
|
|
|
cos_pitch,
|
|
|
|
(int)mag_x, (int)mag_y, (int)mag_z,
|
|
|
|
headX, headY,
|
|
|
|
heading,
|
|
|
|
heading_x, heading_y);
|
|
|
|
}
|
|
|
|
#endif
|
2011-02-14 00:25:20 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
Compass::null_offsets(const Matrix3f &dcm_matrix)
|
|
|
|
{
|
|
|
|
// Update our estimate of the offsets in the magnetometer
|
|
|
|
Vector3f calc(0.0, 0.0, 0.0); // XXX should be safe to remove explicit init here as the default ctor should do the right thing
|
|
|
|
Matrix3f dcm_new_from_last;
|
|
|
|
float weight;
|
|
|
|
|
|
|
|
Vector3f mag_body_new = Vector3f(mag_x,mag_y,mag_z);
|
2012-01-12 17:43:39 -04:00
|
|
|
|
|
|
|
if(_null_enable == false) return;
|
2011-02-14 00:25:20 -04:00
|
|
|
|
|
|
|
if(_null_init_done) {
|
|
|
|
dcm_new_from_last = dcm_matrix.transposed() * _last_dcm_matrix; // Note 11/20/2010: transpose() is not working, transposed() is.
|
|
|
|
|
|
|
|
weight = 3.0 - fabs(dcm_new_from_last.a.x) - fabs(dcm_new_from_last.b.y) - fabs(dcm_new_from_last.c.z);
|
|
|
|
if (weight > .001) {
|
|
|
|
calc = mag_body_new + _mag_body_last; // Eq 11 from Bill P's paper
|
|
|
|
calc -= dcm_new_from_last * _mag_body_last;
|
|
|
|
calc -= dcm_new_from_last.transposed() * mag_body_new;
|
|
|
|
if(weight > 0.5) weight = 0.5;
|
|
|
|
calc = calc * (weight);
|
|
|
|
_offset.set(_offset.get() - calc);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
_null_init_done = true;
|
|
|
|
}
|
|
|
|
_mag_body_last = mag_body_new - calc;
|
|
|
|
_last_dcm_matrix = dcm_matrix;
|
|
|
|
|
|
|
|
}
|
2012-01-12 17:43:39 -04:00
|
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
Compass::null_offsets_enable(void)
|
|
|
|
{
|
|
|
|
_null_init_done = false;
|
|
|
|
_null_enable = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
Compass::null_offsets_disable(void)
|
|
|
|
{
|
|
|
|
_null_init_done = false;
|
|
|
|
_null_enable = false;
|
2012-02-11 07:53:30 -04:00
|
|
|
}
|