ardupilot/libraries/AP_Compass/AP_Compass_HMC5843.cpp

593 lines
16 KiB
C++
Raw Normal View History

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* AP_Compass_HMC5843.cpp - Arduino Library for HMC5843 I2C magnetometer
* Code by Jordi Muñoz and Jose Julio. DIYDrones.com
*
2016-05-12 13:56:35 -03:00
* Sensor is connected to I2C port
* Sensor is initialized in Continuos mode (10Hz)
*
*/
#include <AP_HAL/AP_HAL.h>
#ifdef HAL_COMPASS_HMC5843_I2C_ADDR
#include <assert.h>
#include <utility>
#include <AP_Math/AP_Math.h>
#include <AP_HAL/AP_HAL.h>
#include <AP_HAL/utility/sparse-endian.h>
#include "AP_Compass_HMC5843.h"
#include <AP_InertialSensor/AP_InertialSensor.h>
#include <AP_InertialSensor/AuxiliaryBus.h>
2012-10-11 17:48:39 -03:00
extern const AP_HAL::HAL& hal;
/*
* Defaul address: 0x1E
*/
#define HMC5843_REG_CONFIG_A 0x00
// Valid sample averaging for 5883L
#define HMC5843_SAMPLE_AVERAGING_1 (0x00 << 5)
#define HMC5843_SAMPLE_AVERAGING_2 (0x01 << 5)
#define HMC5843_SAMPLE_AVERAGING_4 (0x02 << 5)
#define HMC5843_SAMPLE_AVERAGING_8 (0x03 << 5)
// Valid data output rates for 5883L
#define HMC5843_OSR_0_75HZ (0x00 << 2)
#define HMC5843_OSR_1_5HZ (0x01 << 2)
#define HMC5843_OSR_3HZ (0x02 << 2)
#define HMC5843_OSR_7_5HZ (0x03 << 2)
#define HMC5843_OSR_15HZ (0x04 << 2)
#define HMC5843_OSR_30HZ (0x05 << 2)
#define HMC5843_OSR_75HZ (0x06 << 2)
// Sensor operation modes
#define HMC5843_OPMODE_NORMAL 0x00
#define HMC5843_OPMODE_POSITIVE_BIAS 0x01
#define HMC5843_OPMODE_NEGATIVE_BIAS 0x02
#define HMC5843_OPMODE_MASK 0x03
#define HMC5843_REG_CONFIG_B 0x01
#define HMC5883L_GAIN_0_88_GA (0x00 << 5)
#define HMC5883L_GAIN_1_30_GA (0x01 << 5)
#define HMC5883L_GAIN_1_90_GA (0x02 << 5)
#define HMC5883L_GAIN_2_50_GA (0x03 << 5)
#define HMC5883L_GAIN_4_00_GA (0x04 << 5)
#define HMC5883L_GAIN_4_70_GA (0x05 << 5)
#define HMC5883L_GAIN_5_60_GA (0x06 << 5)
#define HMC5883L_GAIN_8_10_GA (0x07 << 5)
#define HMC5843_GAIN_0_70_GA (0x00 << 5)
#define HMC5843_GAIN_1_00_GA (0x01 << 5)
#define HMC5843_GAIN_1_50_GA (0x02 << 5)
#define HMC5843_GAIN_2_00_GA (0x03 << 5)
#define HMC5843_GAIN_3_20_GA (0x04 << 5)
#define HMC5843_GAIN_3_80_GA (0x05 << 5)
#define HMC5843_GAIN_4_50_GA (0x06 << 5)
#define HMC5843_GAIN_6_50_GA (0x07 << 5)
#define HMC5843_REG_MODE 0x02
#define HMC5843_MODE_CONTINUOUS 0x00
#define HMC5843_MODE_SINGLE 0x01
#define HMC5843_REG_DATA_OUTPUT_X_MSB 0x03
AP_Compass_HMC5843::AP_Compass_HMC5843(Compass &compass, AP_HMC5843_BusDriver *bus,
bool force_external)
: AP_Compass_Backend(compass)
, _bus(bus)
, _force_external(force_external)
{
}
AP_Compass_HMC5843::~AP_Compass_HMC5843()
{
delete _bus;
}
AP_Compass_Backend *AP_Compass_HMC5843::probe(Compass &compass,
AP_HAL::OwnPtr<AP_HAL::I2CDevice> dev,
bool force_external)
{
AP_HMC5843_BusDriver *bus = new AP_HMC5843_BusDriver_HALDevice(std::move(dev));
if (!bus) {
return nullptr;
}
AP_Compass_HMC5843 *sensor = new AP_Compass_HMC5843(compass, bus, force_external);
if (!sensor || !sensor->init()) {
delete sensor;
return nullptr;
}
return sensor;
}
AP_Compass_Backend *AP_Compass_HMC5843::probe_mpu6000(Compass &compass)
{
AP_InertialSensor &ins = *AP_InertialSensor::get_instance();
AP_HMC5843_BusDriver *bus =
new AP_HMC5843_BusDriver_Auxiliary(ins, HAL_INS_MPU60XX_SPI,
HAL_COMPASS_HMC5843_I2C_ADDR);
if (!bus) {
return nullptr;
}
AP_Compass_HMC5843 *sensor = new AP_Compass_HMC5843(compass, bus, false);
if (!sensor || !sensor->init()) {
delete sensor;
return nullptr;
}
return sensor;
}
bool AP_Compass_HMC5843::init()
{
hal.scheduler->suspend_timer_procs();
AP_HAL::Semaphore *bus_sem = _bus->get_semaphore();
if (!bus_sem || !bus_sem->take(HAL_SEMAPHORE_BLOCK_FOREVER)) {
hal.console->printf("HMC5843: Unable to get bus semaphore\n");
goto fail_sem;
}
if (!_bus->configure()) {
hal.console->printf("HMC5843: Could not configure the bus\n");
goto errout;
}
if (!_detect_version()) {
hal.console->printf("HMC5843: Could not detect version\n");
goto errout;
}
if (!_calibrate()) {
hal.console->printf("HMC5843: Could not calibrate sensor\n");
goto errout;
}
if (!_setup_sampling_mode()) {
goto errout;
}
if (!_bus->start_measurements()) {
hal.console->printf("HMC5843: Could not start measurements on bus\n");
goto errout;
}
_initialised = true;
bus_sem->give();
hal.scheduler->resume_timer_procs();
// perform an initial read
read();
_compass_instance = register_compass();
set_dev_id(_compass_instance, _product_id);
if (_force_external) {
set_external(_compass_instance, true);
}
return true;
errout:
bus_sem->give();
fail_sem:
hal.scheduler->resume_timer_procs();
return false;
}
/*
* Accumulate a reading from the magnetometer
*
* bus semaphore must not be taken
*/
void AP_Compass_HMC5843::accumulate()
{
if (!_initialised) {
// someone has tried to enable a compass for the first time
// mid-flight .... we can't do that yet (especially as we won't
// have the right orientation!)
return;
}
uint32_t tnow = AP_HAL::micros();
if (_accum_count != 0 && (tnow - _last_accum_time) < 13333) {
// the compass gets new data at 75Hz
return;
}
if (!_bus->get_semaphore()->take(1)) {
// the bus is busy - try again later
return;
}
bool result = _read_sample();
_bus->get_semaphore()->give();
if (!result) {
return;
}
// the _mag_N values are in the range -2048 to 2047, so we can
// accumulate up to 15 of them in an int16_t. Let's make it 14
// for ease of calculation. We expect to do reads at 10Hz, and
// we get new data at most 75Hz, so we don't expect to
// accumulate more than 8 before a read
// get raw_field - sensor frame, uncorrected
Vector3f raw_field = Vector3f(_mag_x, _mag_y, _mag_z);
raw_field *= _gain_scale;
// rotate to the desired orientation
if (is_external(_compass_instance) &&
_product_id == AP_COMPASS_TYPE_HMC5883L) {
raw_field.rotate(ROTATION_YAW_90);
}
// rotate raw_field from sensor frame to body frame
rotate_field(raw_field, _compass_instance);
// publish raw_field (uncorrected point sample) for calibration use
publish_raw_field(raw_field, tnow, _compass_instance);
// correct raw_field for known errors
correct_field(raw_field, _compass_instance);
_mag_x_accum += raw_field.x;
_mag_y_accum += raw_field.y;
_mag_z_accum += raw_field.z;
_accum_count++;
if (_accum_count == 14) {
_mag_x_accum /= 2;
_mag_y_accum /= 2;
_mag_z_accum /= 2;
_accum_count = 7;
}
_last_accum_time = tnow;
}
/*
* Take accumulated reads from the magnetometer or try to read once if no
* valid data
*
* bus semaphore must not be locked
*/
void AP_Compass_HMC5843::read()
{
if (!_initialised) {
// someone has tried to enable a compass for the first time
// mid-flight .... we can't do that yet (especially as we won't
// have the right orientation!)
return;
}
if (_accum_count == 0) {
accumulate();
if (_retry_time != 0) {
return;
}
}
Vector3f field(_mag_x_accum * _scaling[0],
_mag_y_accum * _scaling[1],
_mag_z_accum * _scaling[2]);
field /= _accum_count;
_accum_count = 0;
_mag_x_accum = _mag_y_accum = _mag_z_accum = 0;
publish_filtered_field(field, _compass_instance);
}
bool AP_Compass_HMC5843::_setup_sampling_mode()
{
if (!_bus->register_write(HMC5843_REG_CONFIG_A, _base_config) ||
!_bus->register_write(HMC5843_REG_CONFIG_B, _gain_config) ||
!_bus->register_write(HMC5843_REG_MODE, HMC5843_MODE_CONTINUOUS)) {
return false;
}
return true;
}
/*
* Read Sensor data - bus semaphore must be taken
*/
bool AP_Compass_HMC5843::_read_sample()
{
struct PACKED {
be16_t rx;
be16_t ry;
be16_t rz;
} val;
int16_t rx, ry, rz;
if (_retry_time > AP_HAL::millis()) {
return false;
}
if (!_bus->block_read(HMC5843_REG_DATA_OUTPUT_X_MSB, (uint8_t *) &val, sizeof(val))){
_retry_time = AP_HAL::millis() + 1000;
return false;
}
rx = be16toh(val.rx);
ry = be16toh(val.ry);
rz = be16toh(val.rz);
if (_product_id == AP_COMPASS_TYPE_HMC5883L) {
std::swap(ry, rz);
}
if (rx == -4096 || ry == -4096 || rz == -4096) {
// no valid data available
return false;
}
_mag_x = -rx;
_mag_y = ry;
_mag_z = -rz;
_retry_time = 0;
return true;
}
bool AP_Compass_HMC5843::_detect_version()
{
_base_config = 0x0;
uint8_t try_config = HMC5843_SAMPLE_AVERAGING_8 | HMC5843_OSR_75HZ | HMC5843_OPMODE_NORMAL;
if (!_bus->register_write(HMC5843_REG_CONFIG_A, try_config) ||
!_bus->register_read(HMC5843_REG_CONFIG_A, &_base_config)) {
return false;
}
if (_base_config == try_config) {
/* a 5883L supports the sample averaging config */
_product_id = AP_COMPASS_TYPE_HMC5883L;
_gain_config = HMC5883L_GAIN_1_30_GA;
_gain_scale = (1.0f / 1090) * 1000;
} else if (_base_config == (HMC5843_OPMODE_NORMAL | HMC5843_OSR_75HZ)) {
_product_id = AP_COMPASS_TYPE_HMC5843;
_gain_config = HMC5843_GAIN_1_00_GA;
_gain_scale = (1.0f / 1300) * 1000;
} else {
/* not behaving like either supported compass type */
return false;
}
return true;
}
bool AP_Compass_HMC5843::_calibrate()
{
uint8_t calibration_gain;
uint16_t expected_x;
uint16_t expected_yz;
int numAttempts = 0, good_count = 0;
bool success = false;
if (_product_id == AP_COMPASS_TYPE_HMC5883L) {
calibration_gain = HMC5883L_GAIN_2_50_GA;
/*
* note that the HMC5883 datasheet gives the x and y expected
* values as 766 and the z as 713. Experiments have shown the x
* axis is around 766, and the y and z closer to 713.
*/
expected_x = 766;
expected_yz = 713;
} else {
calibration_gain = HMC5843_GAIN_1_00_GA;
expected_x = 715;
expected_yz = 715;
}
uint8_t old_config = _base_config & ~(HMC5843_OPMODE_MASK);
while (success == 0 && numAttempts < 25 && good_count < 5) {
numAttempts++;
// force positiveBias (compass should return 715 for all channels)
if (!_bus->register_write(HMC5843_REG_CONFIG_A,
old_config | HMC5843_OPMODE_POSITIVE_BIAS)) {
// compass not responding on the bus
continue;
}
2012-10-11 17:48:39 -03:00
hal.scheduler->delay(50);
// set gains
if (!_bus->register_write(HMC5843_REG_CONFIG_B, calibration_gain) ||
!_bus->register_write(HMC5843_REG_MODE, HMC5843_MODE_SINGLE)) {
continue;
}
// read values from the compass
2012-10-11 17:48:39 -03:00
hal.scheduler->delay(50);
if (!_read_sample()) {
// we didn't read valid values
continue;
}
float cal[3];
// hal.console->printf("mag %d %d %d\n", _mag_x, _mag_y, _mag_z);
cal[0] = fabsf(expected_x / (float)_mag_x);
cal[1] = fabsf(expected_yz / (float)_mag_y);
cal[2] = fabsf(expected_yz / (float)_mag_z);
// hal.console->printf("cal=%.2f %.2f %.2f\n", cal[0], cal[1], cal[2]);
// we throw away the first two samples as the compass may
// still be changing its state from the application of the
// strap excitation. After that we accept values in a
// reasonable range
if (numAttempts <= 2) {
continue;
}
#define IS_CALIBRATION_VALUE_VALID(val) (val > 0.7f && val < 1.35f)
if (IS_CALIBRATION_VALUE_VALID(cal[0]) &&
IS_CALIBRATION_VALUE_VALID(cal[1]) &&
IS_CALIBRATION_VALUE_VALID(cal[2])) {
// hal.console->printf("car=%.2f %.2f %.2f good\n", cal[0], cal[1], cal[2]);
good_count++;
_scaling[0] += cal[0];
_scaling[1] += cal[1];
_scaling[2] += cal[2];
}
#undef IS_CALIBRATION_VALUE_VALID
#if 0
/* useful for debugging */
hal.console->printf("MagX: %d MagY: %d MagZ: %d\n", (int)_mag_x, (int)_mag_y, (int)_mag_z);
hal.console->printf("CalX: %.2f CalY: %.2f CalZ: %.2f\n", cal[0], cal[1], cal[2]);
#endif
}
if (good_count >= 5) {
_scaling[0] = _scaling[0] / good_count;
_scaling[1] = _scaling[1] / good_count;
_scaling[2] = _scaling[2] / good_count;
success = true;
} else {
/* best guess */
_scaling[0] = 1.0;
_scaling[1] = 1.0;
_scaling[2] = 1.0;
}
return success;
}
/* AP_HAL::I2CDevice implementation of the HMC5843 */
AP_HMC5843_BusDriver_HALDevice::AP_HMC5843_BusDriver_HALDevice(AP_HAL::OwnPtr<AP_HAL::I2CDevice> dev)
: _dev(std::move(dev))
{
}
bool AP_HMC5843_BusDriver_HALDevice::block_read(uint8_t reg, uint8_t *buf, uint32_t size)
{
return _dev->read_registers(reg, buf, size);
}
bool AP_HMC5843_BusDriver_HALDevice::register_read(uint8_t reg, uint8_t *val)
{
return _dev->read_registers(reg, val, 1);
}
bool AP_HMC5843_BusDriver_HALDevice::register_write(uint8_t reg, uint8_t val)
{
return _dev->write_register(reg, val);
}
AP_HAL::Semaphore *AP_HMC5843_BusDriver_HALDevice::get_semaphore()
{
return _dev->get_semaphore();
}
/* HMC5843 on an auxiliary bus of IMU driver */
AP_HMC5843_BusDriver_Auxiliary::AP_HMC5843_BusDriver_Auxiliary(AP_InertialSensor &ins, uint8_t backend_id,
uint8_t addr)
{
/*
* Only initialize members. Fails are handled by configure or while
* getting the semaphore
*/
_bus = ins.get_auxiliary_bus(backend_id);
if (!_bus) {
return;
}
_slave = _bus->request_next_slave(addr);
}
AP_HMC5843_BusDriver_Auxiliary::~AP_HMC5843_BusDriver_Auxiliary()
{
/* After started it's owned by AuxiliaryBus */
if (!_started) {
delete _slave;
}
}
bool AP_HMC5843_BusDriver_Auxiliary::block_read(uint8_t reg, uint8_t *buf, uint32_t size)
{
if (_started) {
/*
* We can only read a block when reading the block of sample values -
* calling with any other value is a mistake
*/
assert(reg == HMC5843_REG_DATA_OUTPUT_X_MSB);
int n = _slave->read(buf);
return n == static_cast<int>(size);
}
int r = _slave->passthrough_read(reg, buf, size);
return r > 0 && static_cast<uint32_t>(r) == size;
}
bool AP_HMC5843_BusDriver_Auxiliary::register_read(uint8_t reg, uint8_t *val)
{
return _slave->passthrough_read(reg, val, 1) == 1;
}
bool AP_HMC5843_BusDriver_Auxiliary::register_write(uint8_t reg, uint8_t val)
{
return _slave->passthrough_write(reg, val) == 1;
}
AP_HAL::Semaphore *AP_HMC5843_BusDriver_Auxiliary::get_semaphore()
{
return _bus->get_semaphore();
}
bool AP_HMC5843_BusDriver_Auxiliary::configure()
{
if (!_bus || !_slave) {
return false;
}
return true;
}
bool AP_HMC5843_BusDriver_Auxiliary::start_measurements()
{
if (_bus->register_periodic_read(_slave, HMC5843_REG_DATA_OUTPUT_X_MSB, 6) < 0) {
return false;
}
_started = true;
return true;
}
#endif