ardupilot/ArduCopter/control_land.cpp

328 lines
12 KiB
C++
Raw Normal View History

#include "Copter.h"
static bool land_with_gps;
static uint32_t land_start_time;
static bool land_pause;
// land_init - initialise land controller
bool Copter::land_init(bool ignore_checks)
{
// check if we have GPS and decide which LAND we're going to do
land_with_gps = position_ok();
if (land_with_gps) {
// set target to stopping point
Vector3f stopping_point;
wp_nav->get_loiter_stopping_point_xy(stopping_point);
wp_nav->init_loiter_target(stopping_point);
}
2014-02-15 04:37:24 -04:00
// initialize vertical speeds and leash lengths
pos_control->set_speed_z(wp_nav->get_speed_down(), wp_nav->get_speed_up());
pos_control->set_accel_z(wp_nav->get_accel_z());
// initialise position and desired velocity
if (!pos_control->is_active_z()) {
pos_control->set_alt_target_to_current_alt();
pos_control->set_desired_velocity_z(inertial_nav.get_velocity_z());
}
land_start_time = millis();
land_pause = false;
// reset flag indicating if pilot has applied roll or pitch inputs during landing
ap.land_repo_active = false;
return true;
}
// land_run - runs the land controller
// should be called at 100hz or more
void Copter::land_run()
{
if (land_with_gps) {
land_gps_run();
}else{
land_nogps_run();
}
}
// land_run - runs the land controller
// horizontal position controlled with loiter controller
// should be called at 100hz or more
void Copter::land_gps_run()
{
// if not auto armed or landed or motor interlock not enabled set throttle to zero and exit immediately
if (!motors->armed() || !ap.auto_armed || ap.land_complete || !motors->get_interlock()) {
#if FRAME_CONFIG == HELI_FRAME // Helicopters always stabilize roll/pitch/yaw
// call attitude controller
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(0, 0, 0, get_smoothing_gain());
attitude_control->set_throttle_out(0,false,g.throttle_filt);
2016-01-13 03:11:01 -04:00
#else
motors->set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
2016-01-13 03:11:01 -04:00
// multicopters do not stabilize roll/pitch/yaw when disarmed
attitude_control->set_throttle_out_unstabilized(0,true,g.throttle_filt);
#endif
wp_nav->init_loiter_target();
// disarm when the landing detector says we've landed
if (ap.land_complete) {
init_disarm_motors();
}
return;
}
2016-01-13 03:11:01 -04:00
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
// pause before beginning land descent
if(land_pause && millis()-land_start_time >= LAND_WITH_DELAY_MS) {
land_pause = false;
}
land_run_horizontal_control();
land_run_vertical_control(land_pause);
}
// land_nogps_run - runs the land controller
// pilot controls roll and pitch angles
// should be called at 100hz or more
void Copter::land_nogps_run()
{
float target_roll = 0.0f, target_pitch = 0.0f;
float target_yaw_rate = 0;
// process pilot inputs
if (!failsafe.radio) {
if ((g.throttle_behavior & THR_BEHAVE_HIGH_THROTTLE_CANCELS_LAND) != 0 && rc_throttle_control_in_filter.get() > LAND_CANCEL_TRIGGER_THR){
Log_Write_Event(DATA_LAND_CANCELLED_BY_PILOT);
// exit land if throttle is high
2016-01-25 19:40:41 -04:00
set_mode(ALT_HOLD, MODE_REASON_THROTTLE_LAND_ESCAPE);
}
if (g.land_repositioning) {
// apply SIMPLE mode transform to pilot inputs
update_simple_mode();
// get pilot desired lean angles
ArduCopter: Fix up after refactoring RC_Channel class Further to refactor of RC_Channel class which included adding get_xx set_xx methods, change reads and writes to the public members to calls to get and set functionsss old public member(int16_t) get function -> int16_t set function (int16_t) (expression where c is an object of type RC_Channel) c.radio_in c.get_radio_in() c.set_radio_in(v) c.control_in c.get_control_in() c.set_control_in(v) c.servo_out c.get_servo_out() c.set_servo_out(v) c.pwm_out c.get_pwm_out() // use existing c.radio_out c.get_radio_out() c.set_radio_out(v) c.radio_max c.get_radio_max() c.set_radio_max(v) c.radio_min c.get_radio_min() c.set_radio_min(v) c.radio_trim c.get_radio_trim() c.set_radio_trim(v); c.min_max_configured() // return true if min and max are configured Because data members of RC_Channels are now private and so cannot be written directly some overloads are provided in the Plane classes to provide the old functionality new overload Plane::stick_mix_channel(RC_Channel *channel) which forwards to the previously existing void stick_mix_channel(RC_Channel *channel, int16_t &servo_out); new overload Plane::channel_output_mixer(Rc_Channel* , RC_Channel*)const which forwards to (uint8_t mixing_type, int16_t & chan1, int16_t & chan2)const; Rename functions RC_Channel_aux::set_radio_trim(Aux_servo_function_t function) to RC_Channel_aux::set_trim_to_radio_in_for(Aux_servo_function_t function) RC_Channel_aux::set_servo_out(Aux_servo_function_t function, int16_t value) to RC_Channel_aux::set_servo_out_for(Aux_servo_function_t function, int16_t value) Rationale: RC_Channel is a complicated class, which combines several functionalities dealing with stick inputs in pwm and logical units, logical and actual actuator outputs, unit conversion etc, etc The intent of this PR is to clarify existing use of the class. At the basic level it should now be possible to grep all places where private variable is set by searching for the set_xx function. (The wider purpose is to provide a more generic and logically simpler method of output mixing. This is a small step)
2016-05-08 05:46:59 -03:00
get_pilot_desired_lean_angles(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_roll, target_pitch, aparm.angle_max);
}
// get pilot's desired yaw rate
ArduCopter: Fix up after refactoring RC_Channel class Further to refactor of RC_Channel class which included adding get_xx set_xx methods, change reads and writes to the public members to calls to get and set functionsss old public member(int16_t) get function -> int16_t set function (int16_t) (expression where c is an object of type RC_Channel) c.radio_in c.get_radio_in() c.set_radio_in(v) c.control_in c.get_control_in() c.set_control_in(v) c.servo_out c.get_servo_out() c.set_servo_out(v) c.pwm_out c.get_pwm_out() // use existing c.radio_out c.get_radio_out() c.set_radio_out(v) c.radio_max c.get_radio_max() c.set_radio_max(v) c.radio_min c.get_radio_min() c.set_radio_min(v) c.radio_trim c.get_radio_trim() c.set_radio_trim(v); c.min_max_configured() // return true if min and max are configured Because data members of RC_Channels are now private and so cannot be written directly some overloads are provided in the Plane classes to provide the old functionality new overload Plane::stick_mix_channel(RC_Channel *channel) which forwards to the previously existing void stick_mix_channel(RC_Channel *channel, int16_t &servo_out); new overload Plane::channel_output_mixer(Rc_Channel* , RC_Channel*)const which forwards to (uint8_t mixing_type, int16_t & chan1, int16_t & chan2)const; Rename functions RC_Channel_aux::set_radio_trim(Aux_servo_function_t function) to RC_Channel_aux::set_trim_to_radio_in_for(Aux_servo_function_t function) RC_Channel_aux::set_servo_out(Aux_servo_function_t function, int16_t value) to RC_Channel_aux::set_servo_out_for(Aux_servo_function_t function, int16_t value) Rationale: RC_Channel is a complicated class, which combines several functionalities dealing with stick inputs in pwm and logical units, logical and actual actuator outputs, unit conversion etc, etc The intent of this PR is to clarify existing use of the class. At the basic level it should now be possible to grep all places where private variable is set by searching for the set_xx function. (The wider purpose is to provide a more generic and logically simpler method of output mixing. This is a small step)
2016-05-08 05:46:59 -03:00
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
}
// if not auto armed or landed or motor interlock not enabled set throttle to zero and exit immediately
if (!motors->armed() || !ap.auto_armed || ap.land_complete || !motors->get_interlock()) {
#if FRAME_CONFIG == HELI_FRAME // Helicopters always stabilize roll/pitch/yaw
// call attitude controller
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());
attitude_control->set_throttle_out(0,false,g.throttle_filt);
2016-01-13 03:11:01 -04:00
#else
motors->set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
2016-01-13 03:11:01 -04:00
// multicopters do not stabilize roll/pitch/yaw when disarmed
attitude_control->set_throttle_out_unstabilized(0,true,g.throttle_filt);
#endif
// disarm when the landing detector says we've landed
if (ap.land_complete) {
init_disarm_motors();
}
return;
}
2016-01-13 03:11:01 -04:00
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
2016-01-13 03:11:01 -04:00
// call attitude controller
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());
// pause before beginning land descent
if(land_pause && millis()-land_start_time >= LAND_WITH_DELAY_MS) {
land_pause = false;
}
land_run_vertical_control(land_pause);
}
/*
get a height above ground estimate for landing
*/
int32_t Copter::land_get_alt_above_ground(void)
{
int32_t alt_above_ground;
if (rangefinder_alt_ok()) {
alt_above_ground = rangefinder_state.alt_cm_filt.get();
} else {
bool navigating = pos_control->is_active_xy();
if (!navigating || !current_loc.get_alt_cm(Location_Class::ALT_FRAME_ABOVE_TERRAIN, alt_above_ground)) {
alt_above_ground = current_loc.alt;
}
}
return alt_above_ground;
}
void Copter::land_run_vertical_control(bool pause_descent)
{
bool navigating = pos_control->is_active_xy();
#if PRECISION_LANDING == ENABLED
bool doing_precision_landing = !ap.land_repo_active && precland.target_acquired() && navigating;
#else
bool doing_precision_landing = false;
#endif
// compute desired velocity
const float precland_acceptable_error = 15.0f;
const float precland_min_descent_speed = 10.0f;
int32_t alt_above_ground = land_get_alt_above_ground();
float cmb_rate = 0;
if (!pause_descent) {
2016-08-11 22:47:24 -03:00
float max_land_descent_velocity;
if (g.land_speed_high > 0) {
max_land_descent_velocity = -g.land_speed_high;
} else {
max_land_descent_velocity = pos_control->get_speed_down();
2016-08-11 22:47:24 -03:00
}
// Don't speed up for landing.
max_land_descent_velocity = MIN(max_land_descent_velocity, -abs(g.land_speed));
// Compute a vertical velocity demand such that the vehicle approaches LAND_START_ALT. Without the below constraint, this would cause the vehicle to hover at LAND_START_ALT.
cmb_rate = AC_AttitudeControl::sqrt_controller(LAND_START_ALT-alt_above_ground, g.p_alt_hold.kP(), pos_control->get_accel_z());
2016-08-11 22:47:24 -03:00
// Constrain the demanded vertical velocity so that it is between the configured maximum descent speed and the configured minimum descent speed.
cmb_rate = constrain_float(cmb_rate, max_land_descent_velocity, -abs(g.land_speed));
2016-08-02 01:05:21 -03:00
if (doing_precision_landing && rangefinder_alt_ok() && rangefinder_state.alt_cm > 35.0f && rangefinder_state.alt_cm < 200.0f) {
float max_descent_speed = abs(g.land_speed)/2.0f;
float land_slowdown = MAX(0.0f, pos_control->get_horizontal_error()*(max_descent_speed/precland_acceptable_error));
cmb_rate = MIN(-precland_min_descent_speed, -max_descent_speed+land_slowdown);
}
}
2014-12-18 03:13:48 -04:00
// record desired climb rate for logging
2014-12-18 00:11:28 -04:00
desired_climb_rate = cmb_rate;
// update altitude target and call position controller
pos_control->set_alt_target_from_climb_rate_ff(cmb_rate, G_Dt, true);
pos_control->update_z_controller();
}
void Copter::land_run_horizontal_control()
{
int16_t roll_control = 0, pitch_control = 0;
float target_yaw_rate = 0;
// relax loiter target if we might be landed
if (ap.land_complete_maybe) {
wp_nav->loiter_soften_for_landing();
}
// process pilot inputs
if (!failsafe.radio) {
if ((g.throttle_behavior & THR_BEHAVE_HIGH_THROTTLE_CANCELS_LAND) != 0 && rc_throttle_control_in_filter.get() > LAND_CANCEL_TRIGGER_THR){
Log_Write_Event(DATA_LAND_CANCELLED_BY_PILOT);
// exit land if throttle is high
if (!set_mode(LOITER, MODE_REASON_THROTTLE_LAND_ESCAPE)) {
set_mode(ALT_HOLD, MODE_REASON_THROTTLE_LAND_ESCAPE);
}
}
if (g.land_repositioning) {
// apply SIMPLE mode transform to pilot inputs
update_simple_mode();
// process pilot's roll and pitch input
roll_control = channel_roll->get_control_in();
pitch_control = channel_pitch->get_control_in();
// record if pilot has overriden roll or pitch
if (roll_control != 0 || pitch_control != 0) {
ap.land_repo_active = true;
}
}
// get pilot's desired yaw rate
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
}
#if PRECISION_LANDING == ENABLED
bool doing_precision_landing = !ap.land_repo_active && precland.target_acquired();
// run precision landing
if (doing_precision_landing) {
Vector2f target_pos, target_vel_rel;
if (!precland.get_target_position_cm(target_pos)) {
target_pos.x = inertial_nav.get_position().x;
target_pos.y = inertial_nav.get_position().y;
}
if (!precland.get_target_velocity_relative_cms(target_vel_rel)) {
target_vel_rel.x = -inertial_nav.get_velocity().x;
target_vel_rel.y = -inertial_nav.get_velocity().y;
}
pos_control->set_xy_target(target_pos.x, target_pos.y);
pos_control->override_vehicle_velocity_xy(-target_vel_rel);
}
#endif
// process roll, pitch inputs
wp_nav->set_pilot_desired_acceleration(roll_control, pitch_control);
// run loiter controller
wp_nav->update_loiter(ekfGndSpdLimit, ekfNavVelGainScaler);
int32_t nav_roll = wp_nav->get_roll();
int32_t nav_pitch = wp_nav->get_pitch();
if (g2.wp_navalt_min > 0) {
// user has requested an altitude below which navigation
// attitude is limited. This is used to prevent commanded roll
// over on landing, which particularly affects helicopters if
// there is any position estimate drift after touchdown. We
// limit attitude to 7 degrees below this limit and linearly
// interpolate for 1m above that
int alt_above_ground = land_get_alt_above_ground();
float attitude_limit_cd = linear_interpolate(700, aparm.angle_max, alt_above_ground,
g2.wp_navalt_min*100U, (g2.wp_navalt_min+1)*100U);
float total_angle_cd = norm(nav_roll, nav_pitch);
if (total_angle_cd > attitude_limit_cd) {
float ratio = attitude_limit_cd / total_angle_cd;
nav_roll *= ratio;
nav_pitch *= ratio;
// tell position controller we are applying an external limit
pos_control->set_limit_accel_xy();
}
}
// call attitude controller
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(nav_roll, nav_pitch, target_yaw_rate, get_smoothing_gain());
}
// land_do_not_use_GPS - forces land-mode to not use the GPS but instead rely on pilot input for roll and pitch
// called during GPS failsafe to ensure that if we were already in LAND mode that we do not use the GPS
// has no effect if we are not already in LAND mode
void Copter::land_do_not_use_GPS()
{
land_with_gps = false;
}
// set_mode_land_with_pause - sets mode to LAND and triggers 4 second delay before descent starts
// this is always called from a failsafe so we trigger notification to pilot
2016-01-25 19:40:41 -04:00
void Copter::set_mode_land_with_pause(mode_reason_t reason)
{
2016-01-25 19:40:41 -04:00
set_mode(LAND, reason);
land_pause = true;
// alert pilot to mode change
AP_Notify::events.failsafe_mode_change = 1;
}
// landing_with_GPS - returns true if vehicle is landing using GPS
bool Copter::landing_with_GPS() {
return (control_mode == LAND && land_with_gps);
}