ardupilot/libraries/AP_Baro/AP_Baro_UAVCAN.cpp

197 lines
6.5 KiB
C++
Raw Normal View History

#include <AP_HAL/AP_HAL.h>
#if HAL_ENABLE_LIBUAVCAN_DRIVERS
#include "AP_Baro_UAVCAN.h"
#include <AP_CANManager/AP_CANManager.h>
#include <AP_UAVCAN/AP_UAVCAN.h>
#include <uavcan/equipment/air_data/StaticPressure.hpp>
#include <uavcan/equipment/air_data/StaticTemperature.hpp>
extern const AP_HAL::HAL& hal;
#define LOG_TAG "Baro"
//UAVCAN Frontend Registry Binder
UC_REGISTRY_BINDER(PressureCb, uavcan::equipment::air_data::StaticPressure);
UC_REGISTRY_BINDER(TemperatureCb, uavcan::equipment::air_data::StaticTemperature);
AP_Baro_UAVCAN::DetectedModules AP_Baro_UAVCAN::_detected_modules[] = {0};
HAL_Semaphore AP_Baro_UAVCAN::_sem_registry;
/*
constructor - registers instance at top Baro driver
*/
AP_Baro_UAVCAN::AP_Baro_UAVCAN(AP_Baro &baro) :
AP_Baro_Backend(baro)
{}
void AP_Baro_UAVCAN::subscribe_msgs(AP_UAVCAN* ap_uavcan)
{
if (ap_uavcan == nullptr) {
return;
}
auto* node = ap_uavcan->get_node();
uavcan::Subscriber<uavcan::equipment::air_data::StaticPressure, PressureCb> *pressure_listener;
pressure_listener = new uavcan::Subscriber<uavcan::equipment::air_data::StaticPressure, PressureCb>(*node);
// Msg Handler
const int pressure_listener_res = pressure_listener->start(PressureCb(ap_uavcan, &handle_pressure));
if (pressure_listener_res < 0) {
AP_HAL::panic("UAVCAN Baro subscriber start problem\n\r");
}
uavcan::Subscriber<uavcan::equipment::air_data::StaticTemperature, TemperatureCb> *temperature_listener;
temperature_listener = new uavcan::Subscriber<uavcan::equipment::air_data::StaticTemperature, TemperatureCb>(*node);
// Msg Handler
const int temperature_listener_res = temperature_listener->start(TemperatureCb(ap_uavcan, &handle_temperature));
if (temperature_listener_res < 0) {
AP_HAL::panic("UAVCAN Baro subscriber start problem\n\r");
}
}
AP_Baro_Backend* AP_Baro_UAVCAN::probe(AP_Baro &baro)
{
WITH_SEMAPHORE(_sem_registry);
AP_Baro_UAVCAN* backend = nullptr;
for (uint8_t i = 0; i < BARO_MAX_DRIVERS; i++) {
if (_detected_modules[i].driver == nullptr && _detected_modules[i].ap_uavcan != nullptr) {
backend = new AP_Baro_UAVCAN(baro);
if (backend == nullptr) {
AP::can().log_text(AP_CANManager::LOG_ERROR,
LOG_TAG,
"Failed register UAVCAN Baro Node %d on Bus %d\n",
_detected_modules[i].node_id,
_detected_modules[i].ap_uavcan->get_driver_index());
} else {
_detected_modules[i].driver = backend;
backend->_pressure = 0;
backend->_pressure_count = 0;
backend->_ap_uavcan = _detected_modules[i].ap_uavcan;
backend->_node_id = _detected_modules[i].node_id;
backend->_instance = backend->_frontend.register_sensor();
backend->set_bus_id(backend->_instance, AP_HAL::Device::make_bus_id(AP_HAL::Device::BUS_TYPE_UAVCAN,
_detected_modules[i].ap_uavcan->get_driver_index(),
backend->_node_id, 0));
AP::can().log_text(AP_CANManager::LOG_INFO,
LOG_TAG,
"Registered UAVCAN Baro Node %d on Bus %d\n",
_detected_modules[i].node_id,
_detected_modules[i].ap_uavcan->get_driver_index());
}
break;
}
}
return backend;
}
AP_Baro_UAVCAN* AP_Baro_UAVCAN::get_uavcan_backend(AP_UAVCAN* ap_uavcan, uint8_t node_id, bool create_new)
{
if (ap_uavcan == nullptr) {
return nullptr;
}
for (uint8_t i = 0; i < BARO_MAX_DRIVERS; i++) {
if (_detected_modules[i].driver != nullptr &&
_detected_modules[i].ap_uavcan == ap_uavcan &&
_detected_modules[i].node_id == node_id) {
return _detected_modules[i].driver;
}
}
if (create_new) {
bool already_detected = false;
//Check if there's an empty spot for possible registeration
for (uint8_t i = 0; i < BARO_MAX_DRIVERS; i++) {
if (_detected_modules[i].ap_uavcan == ap_uavcan && _detected_modules[i].node_id == node_id) {
//Already Detected
already_detected = true;
break;
}
}
if (!already_detected) {
for (uint8_t i = 0; i < BARO_MAX_DRIVERS; i++) {
if (_detected_modules[i].ap_uavcan == nullptr) {
_detected_modules[i].ap_uavcan = ap_uavcan;
_detected_modules[i].node_id = node_id;
break;
}
}
}
}
return nullptr;
}
void AP_Baro_UAVCAN::_update_and_wrap_accumulator(float *accum, float val, uint8_t *count, const uint8_t max_count)
{
*accum += val;
*count += 1;
if (*count == max_count) {
*count = max_count / 2;
*accum = *accum / 2;
}
}
void AP_Baro_UAVCAN::handle_pressure(AP_UAVCAN* ap_uavcan, uint8_t node_id, const PressureCb &cb)
{
AP_Baro_UAVCAN* driver;
{
WITH_SEMAPHORE(_sem_registry);
driver = get_uavcan_backend(ap_uavcan, node_id, true);
if (driver == nullptr) {
return;
}
}
{
WITH_SEMAPHORE(driver->_sem_baro);
_update_and_wrap_accumulator(&driver->_pressure, cb.msg->static_pressure, &driver->_pressure_count, 32);
driver->new_pressure = true;
}
}
void AP_Baro_UAVCAN::handle_temperature(AP_UAVCAN* ap_uavcan, uint8_t node_id, const TemperatureCb &cb)
{
AP_Baro_UAVCAN* driver;
{
WITH_SEMAPHORE(_sem_registry);
driver = get_uavcan_backend(ap_uavcan, node_id, false);
if (driver == nullptr) {
return;
}
}
{
WITH_SEMAPHORE(driver->_sem_baro);
driver->_temperature = KELVIN_TO_C(cb.msg->static_temperature);
}
}
// Read the sensor
void AP_Baro_UAVCAN::update(void)
{
float pressure = 0;
WITH_SEMAPHORE(_sem_baro);
if (new_pressure) {
if (_pressure_count != 0) {
pressure = _pressure / _pressure_count;
_pressure_count = 0;
_pressure = 0;
}
_copy_to_frontend(_instance, pressure, _temperature);
_frontend.set_external_temperature(_temperature);
new_pressure = false;
}
}
#endif // HAL_ENABLE_LIBUAVCAN_DRIVERS