ardupilot/ArduCopterMega/Attitude.pde

349 lines
10 KiB
Plaintext
Raw Normal View History

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
void
control_nav_mixer()
{
// control +- 45° is mixed with the navigation request by the Autopilot
// output is in degrees = target pitch and roll of copter
g.rc_1.servo_out = g.rc_1.control_mix(nav_roll);
g.rc_2.servo_out = g.rc_2.control_mix(nav_pitch);
}
void
simple_mixer()
{
// control +- 45° is mixed with the navigation request by the Autopilot
// output is in degrees = target pitch and roll of copter
g.rc_1.servo_out = nav_roll;
g.rc_2.servo_out = nav_pitch;
}
void
limit_nav_pitch_roll(long pmax)
{
// limit the nav pitch and roll of the copter
//long pmax = g.pitch_max.get();
nav_roll = constrain(nav_roll, -pmax, pmax);
nav_pitch = constrain(nav_pitch, -pmax, pmax);
}
void
output_stabilize_roll()
{
float error;
error = g.rc_1.servo_out - dcm.roll_sensor;
// limit the error we're feeding to the PID
error = constrain(error, -2500, 2500);
// write out angles back to servo out - this will be converted to PWM by RC_Channel
g.rc_1.servo_out = g.pid_stabilize_roll.get_pi(error, delta_ms_fast_loop, 1.0); // 2500 * .7 = 1750
// We adjust the output by the rate of rotation:
// Rate control through bias corrected gyro rates
// omega is the raw gyro reading
g.rc_1.servo_out -= degrees(omega.x) * 100.0 * g.pid_stabilize_roll.kD();
g.rc_1.servo_out = min(g.rc_1.servo_out, 2500);
g.rc_1.servo_out = max(g.rc_1.servo_out, -2500);
}
void
output_stabilize_pitch()
{
float error;
error = g.rc_2.servo_out - dcm.pitch_sensor;
// limit the error we're feeding to the PID
error = constrain(error, -2500, 2500);
// write out angles back to servo out - this will be converted to PWM by RC_Channel
g.rc_2.servo_out = g.pid_stabilize_pitch.get_pi(error, delta_ms_fast_loop, 1.0);
// We adjust the output by the rate of rotation:
// Rate control through bias corrected gyro rates
// omega is the raw gyro reading
g.rc_2.servo_out -= degrees(omega.y) * 100.0 * g.pid_stabilize_pitch.kD();
g.rc_2.servo_out = min(g.rc_2.servo_out, 2500);
g.rc_2.servo_out = max(g.rc_2.servo_out, -2500);
}
void
output_rate_roll()
{
// rate control
long rate = degrees(omega.x) * 100; // 3rad = 17188 , 6rad = 34377
rate = constrain(rate, -36000, 36000); // limit to something fun!
long error = ((long)g.rc_1.control_in * 8) - rate; // control is += 4500 * 8 = 36000
g.rc_1.servo_out = g.pid_acro_rate_roll.get_pid(error, delta_ms_fast_loop, 1.0); // .075 * 36000 = 2700
g.rc_1.servo_out = constrain(g.rc_1.servo_out, -2400, 2400); // limit to 2400
}
void
output_rate_pitch()
{
// rate control
long rate = degrees(omega.y) * 100; // 3rad = 17188 , 6rad = 34377
rate = constrain(rate, -36000, 36000); // limit to something fun!
long error = ((long)g.rc_2.control_in * 8) - rate; // control is += 4500 * 8 = 36000
g.rc_2.servo_out = g.pid_acro_rate_pitch.get_pid(error, delta_ms_fast_loop, 1.0); // .075 * 36000 = 2700
g.rc_2.servo_out = constrain(g.rc_2.servo_out, -2400, 2400); // limit to 2400
}
// Zeros out navigation Integrators if we are changing mode, have passed a waypoint, etc.
// Keeps outdated data out of our calculations
void
reset_I(void)
{
// I removed these, they don't seem to be needed.
}
/*************************************************************
throttle control
****************************************************************/
// user input:
// -----------
void output_manual_throttle()
{
g.rc_3.servo_out = (float)g.rc_3.control_in * angle_boost();
g.rc_3.servo_out = max(g.rc_3.servo_out, 0);
}
// Autopilot
// ---------
void output_auto_throttle()
{
g.rc_3.servo_out = (float)nav_throttle * angle_boost();
// make sure we never send a 0 throttle that will cut the motors
g.rc_3.servo_out = max(g.rc_3.servo_out, 1);
}
void calc_nav_throttle()
{
// limit error
nav_throttle = g.pid_baro_throttle.get_pid(altitude_error, delta_ms_medium_loop, 1.0);
nav_throttle = g.throttle_cruise + constrain(nav_throttle, -60, 60);
// simple filtering
if(nav_throttle_old == 0)
nav_throttle_old = nav_throttle;
nav_throttle = (nav_throttle + nav_throttle_old) >> 1;
nav_throttle_old = nav_throttle;
// clear the new data flag
invalid_throttle = false;
//Serial.printf("nav_thr %d, scaler %2.2f ", nav_throttle, scaler);
}
void calc_nav_throttle2()
{
// limit error
long error = constrain(altitude_error, -400, 400);
float scaler = 1.0;
if(error < 0){
// try and prevent rapid fall
scaler = (altitude_sensor == BARO) ? .8 : .8;
}
if(altitude_sensor == BARO){
nav_throttle = g.pid_baro_throttle.get_pid(error, delta_ms_medium_loop, scaler); // .2
nav_throttle = g.throttle_cruise + constrain(nav_throttle, -30, 80);
}else{
nav_throttle = g.pid_sonar_throttle.get_pid(error, delta_ms_medium_loop, scaler); // .5
nav_throttle = g.throttle_cruise + constrain(nav_throttle, -40, 100);
}
// simple filtering
if(nav_throttle_old == 0)
nav_throttle_old = nav_throttle;
nav_throttle = (nav_throttle + nav_throttle_old) >> 1;
nav_throttle_old = nav_throttle;
// clear the new data flag
invalid_throttle = false;
//Serial.printf("nav_thr %d, scaler %2.2f ", nav_throttle, scaler);
}
float angle_boost()
{
float temp = cos_pitch_x * cos_roll_x;
temp = 2.0 - constrain(temp, .5, 1.0);
return temp;
}
/*************************************************************
yaw control
****************************************************************/
void output_manual_yaw()
{
// Yaw control
if(g.rc_4.control_in == 0){
output_yaw_with_hold(true); // hold yaw
}else{
output_yaw_with_hold(false); // rate control yaw
}
}
void auto_yaw()
{
output_yaw_with_hold(true); // hold yaw
}
void
clear_yaw_control()
{
//Serial.print("Clear ");
rate_yaw_flag = false; // exit rate_yaw_flag
nav_yaw = dcm.yaw_sensor; // save our Yaw
g.rc_4.servo_out = 0; // reset our output. It can stick when we are at 0 throttle
yaw_error = 0;
yaw_debug = YAW_HOLD; //0
}
#if YAW_OPTION == 0
void
output_yaw_with_hold(boolean hold)
{
// rate control
long rate = degrees(omega.z) * 100; // 3rad = 17188 , 6rad = 34377
rate = constrain(rate, -36000, 36000); // limit to something fun!
if(hold){
// look to see if we have exited rate control properly - ie stopped turning
if(rate_yaw_flag){
// we are still in motion from rate control
if((fabs(omega.z) < .25) || (brake_timer < 2)){
clear_yaw_control();
hold = true; // just to be explicit
}else{
hold = false; // return to rate control until we slow down.
}
}
}else{
// rate control
// this indicates we are under rate control, when we enter Yaw Hold and
// return to 0° per second, we exit rate control and hold the current Yaw
rate_yaw_flag = true;
yaw_error = 0;
}
if(hold){
brake_timer = 0;
// try and hold the current nav_yaw setting
yaw_error = nav_yaw - dcm.yaw_sensor; // +- 60°
// we need to wrap our value so we can be -180 to 180 (*100)
yaw_error = wrap_180(yaw_error);
// limit the error we're feeding to the PID
yaw_error = constrain(yaw_error, -9000, 9000); // limit error to 40 degees
// Apply PID and save the new angle back to RC_Channel
g.rc_4.servo_out = g.pid_yaw.get_pi(yaw_error, delta_ms_fast_loop, 1.0); // .4 * 4000 = 1600
// add in yaw dampener
g.rc_4.servo_out -= rate * g.pid_yaw.kD();
yaw_debug = YAW_HOLD; //0
}else{
if(g.rc_4.control_in == 0){
brake_timer--;
// adaptive braking
g.rc_4.servo_out = (int)(-1200.0 * omega.z);
yaw_debug = YAW_BRAKE; // 1
}else{
// RATE control
brake_timer = 100;
yaw_debug = YAW_RATE; // 2
long error = ((long)g.rc_4.control_in * 6) - (degrees(omega.z) * 100); // control is += 4500 * 6 = 36000
g.rc_4.servo_out = g.pid_acro_rate_yaw.get_pid(error, delta_ms_fast_loop, 1.0); // kP .07 * 36000 = 2520
}
}
// Limit Output
g.rc_4.servo_out = constrain(g.rc_4.servo_out, -3200, 3200); // limit to 32°
//Serial.printf("%d\n",g.rc_4.servo_out);
}
#elif YAW_OPTION == 1
void
output_yaw_with_hold(boolean hold)
{
// re-define nav_yaw if we have stick input
if(g.rc_4.control_in != 0){
// set nav_yaw + or - the current location
nav_yaw = (long)g.rc_4.control_in + dcm.yaw_sensor;
//nav_yaw += (long)(g.rc_4.control_in / 90);
}
// we need to wrap our value so we can be 0 to 360 (*100)
nav_yaw = wrap_360(nav_yaw);
// how far off is nav_yaw from our current yaw?
yaw_error = nav_yaw - dcm.yaw_sensor;
// we need to wrap our value so we can be -180 to 180 (*100)
yaw_error = wrap_180(yaw_error);
// limit the error we're feeding to the PID
yaw_error = constrain(yaw_error, -3500, 3500); // limit error to 60 degees
// Apply PID and save the new angle back to RC_Channel
g.rc_4.servo_out = g.pid_yaw.get_pi(yaw_error, delta_ms_fast_loop, 1.0); // .4 * 4000 = 1600
// add in yaw dampener
g.rc_4.servo_out -= (degrees(omega.z) * 100) * g.pid_yaw.kD();
g.rc_4.servo_out = constrain(g.rc_4.servo_out, -2500, 2500); // limit error to 60 degees
}
#elif YAW_OPTION == 2
void
output_yaw_with_hold(boolean hold)
{
if(hold){
// try and hold the current nav_yaw setting
yaw_error = nav_yaw - dcm.yaw_sensor; // +- 60°
// we need to wrap our value so we can be -180 to 180 (*100)
yaw_error = wrap_180(yaw_error);
// limit the error we're feeding to the PID
yaw_error = constrain(yaw_error, -3500, 3500); // limit error to 40 degees
// Apply PID and save the new angle back to RC_Channel
g.rc_4.servo_out = g.pid_yaw.get_pi(yaw_error, delta_ms_fast_loop, 1.0); // .4 * 4000 = 1600
// add in yaw dampener
g.rc_4.servo_out -= (degrees(omega.z) * 100) * g.pid_yaw.kD();
}else{
// RATE control
long error = ((long)g.rc_4.control_in * 6) - (degrees(omega.z) * 100); // control is += 4500 * 6 = 36000
g.rc_4.servo_out = g.pid_acro_rate_yaw.get_pid(error, delta_ms_fast_loop, 1.0); // kP .07 * 36000 = 2520
nav_yaw = dcm.yaw_sensor; // save our Yaw
}
// Limit Output
g.rc_4.servo_out = constrain(g.rc_4.servo_out, -2500, 2500); // limit to 24°
}
#endif