2013-08-29 02:34:34 -03:00
/*
This program is free software : you can redistribute it and / or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation , either version 3 of the License , or
( at your option ) any later version .
This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY ; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
GNU General Public License for more details .
You should have received a copy of the GNU General Public License
along with this program . If not , see < http : //www.gnu.org/licenses/>.
*/
2012-04-02 05:26:37 -03:00
/*
2012-08-17 03:20:26 -03:00
* AP_MotorsMatrix . cpp - ArduCopter motors library
* Code by RandyMackay . DIYDrones . com
*
*/
2015-08-11 03:28:44 -03:00
# include <AP_HAL/AP_HAL.h>
2012-04-02 05:26:37 -03:00
# include "AP_MotorsMatrix.h"
2012-10-26 20:59:07 -03:00
extern const AP_HAL : : HAL & hal ;
2016-12-14 21:35:21 -04:00
// init
2016-12-14 01:46:42 -04:00
void AP_MotorsMatrix : : init ( motor_frame_class frame_class , motor_frame_type frame_type )
2012-04-02 05:26:37 -03:00
{
2016-12-14 21:35:21 -04:00
// record requested frame class and type
_last_frame_class = frame_class ;
_last_frame_type = frame_type ;
2012-08-17 03:20:26 -03:00
// setup the motors
2016-12-14 01:46:42 -04:00
setup_motors ( frame_class , frame_type ) ;
2012-04-02 05:26:37 -03:00
2012-08-17 03:20:26 -03:00
// enable fast channels or instant pwm
set_update_rate ( _speed_hz ) ;
2012-04-02 05:26:37 -03:00
}
2012-09-13 09:31:13 -03:00
// set update rate to motors - a value in hertz
2012-04-02 05:26:37 -03:00
void AP_MotorsMatrix : : set_update_rate ( uint16_t speed_hz )
{
2012-08-17 03:20:26 -03:00
// record requested speed
_speed_hz = speed_hz ;
2018-03-14 05:52:57 -03:00
uint16_t mask = 0 ;
for ( uint8_t i = 0 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
if ( motor_enabled [ i ] ) {
mask | = 1U < < i ;
}
}
rc_set_freq ( mask , _speed_hz ) ;
2012-04-02 05:26:37 -03:00
}
2016-12-14 01:46:42 -04:00
// set frame class (i.e. quad, hexa, heli) and type (i.e. x, plus)
void AP_MotorsMatrix : : set_frame_class_and_type ( motor_frame_class frame_class , motor_frame_type frame_type )
2012-04-02 05:26:37 -03:00
{
2016-12-14 01:46:42 -04:00
// exit immediately if armed or no change
if ( armed ( ) | | ( frame_class = = _last_frame_class & & _last_frame_type = = frame_type ) ) {
2012-08-17 03:20:26 -03:00
return ;
}
2016-12-14 01:46:42 -04:00
_last_frame_class = frame_class ;
_last_frame_type = frame_type ;
2012-04-02 05:26:37 -03:00
2012-08-17 03:20:26 -03:00
// setup the motors
2016-12-14 01:46:42 -04:00
setup_motors ( frame_class , frame_type ) ;
2012-04-02 05:26:37 -03:00
2012-08-17 03:20:26 -03:00
// enable fast channels or instant pwm
set_update_rate ( _speed_hz ) ;
2012-04-02 05:26:37 -03:00
}
2016-01-18 01:18:34 -04:00
void AP_MotorsMatrix : : output_to_motors ( )
{
int8_t i ;
int16_t motor_out [ AP_MOTORS_MAX_NUM_MOTORS ] ; // final pwm values sent to the motor
2016-06-04 02:54:00 -03:00
switch ( _spool_mode ) {
2016-11-18 21:48:22 -04:00
case SHUT_DOWN : {
2016-01-18 01:18:34 -04:00
// sends minimum values out to the motors
// set motor output based on thrust requests
for ( i = 0 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
if ( motor_enabled [ i ] ) {
2016-11-18 21:48:22 -04:00
if ( _disarm_disable_pwm & & _disarm_safety_timer = = 0 & & ! armed ( ) ) {
motor_out [ i ] = 0 ;
} else {
motor_out [ i ] = get_pwm_output_min ( ) ;
}
2016-01-18 01:18:34 -04:00
}
}
break ;
2016-11-18 21:48:22 -04:00
}
2016-01-18 01:18:34 -04:00
case SPIN_WHEN_ARMED :
// sends output to motors when armed but not flying
for ( i = 0 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
if ( motor_enabled [ i ] ) {
2016-06-08 06:10:54 -03:00
motor_out [ i ] = calc_spin_up_to_pwm ( ) ;
2016-01-18 01:18:34 -04:00
}
}
break ;
case SPOOL_UP :
case THROTTLE_UNLIMITED :
case SPOOL_DOWN :
// set motor output based on thrust requests
for ( i = 0 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
if ( motor_enabled [ i ] ) {
motor_out [ i ] = calc_thrust_to_pwm ( _thrust_rpyt_out [ i ] ) ;
}
}
break ;
}
// send output to each motor
for ( i = 0 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
if ( motor_enabled [ i ] ) {
rc_write ( i , motor_out [ i ] ) ;
}
}
}
2016-05-01 00:07:00 -03:00
2014-07-26 04:29:48 -03:00
// get_motor_mask - returns a bitmask of which outputs are being used for motors (1 means being used)
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
uint16_t AP_MotorsMatrix : : get_motor_mask ( )
{
2018-08-24 02:39:19 -03:00
uint16_t motor_mask = 0 ;
2014-07-26 04:29:48 -03:00
for ( uint8_t i = 0 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
if ( motor_enabled [ i ] ) {
2018-08-24 02:39:19 -03:00
motor_mask | = 1U < < i ;
2014-07-26 04:29:48 -03:00
}
}
2018-08-24 02:39:19 -03:00
uint16_t mask = rc_map_mask ( motor_mask ) ;
// add parent's mask
mask | = AP_MotorsMulticopter : : get_motor_mask ( ) ;
return mask ;
2014-07-26 04:29:48 -03:00
}
2013-05-26 23:21:31 -03:00
// output_armed - sends commands to the motors
// includes new scaling stability patch
2015-04-02 17:54:15 -03:00
void AP_MotorsMatrix : : output_armed_stabilizing ( )
2013-05-26 23:21:31 -03:00
{
2015-12-03 01:48:35 -04:00
uint8_t i ; // general purpose counter
float roll_thrust ; // roll thrust input value, +/- 1.0
float pitch_thrust ; // pitch thrust input value, +/- 1.0
float yaw_thrust ; // yaw thrust input value, +/- 1.0
float throttle_thrust ; // throttle thrust input value, 0.0 - 1.0
2017-10-04 08:36:43 -03:00
float throttle_avg_max ; // throttle thrust average maximum value, 0.0 - 1.0
2015-12-03 01:48:35 -04:00
float throttle_thrust_best_rpy ; // throttle providing maximum roll, pitch and yaw range without climbing
float rpy_scale = 1.0f ; // this is used to scale the roll, pitch and yaw to fit within the motor limits
float rpy_low = 0.0f ; // lowest motor value
float rpy_high = 0.0f ; // highest motor value
float yaw_allowed = 1.0f ; // amount of yaw we can fit in
float unused_range ; // amount of yaw we can fit in the current channel
float thr_adj ; // the difference between the pilot's desired throttle and throttle_thrust_best_rpy
// apply voltage and air pressure compensation
2018-01-24 03:42:10 -04:00
const float compensation_gain = get_compensation_gain ( ) ;
roll_thrust = _roll_in * compensation_gain ;
pitch_thrust = _pitch_in * compensation_gain ;
yaw_thrust = _yaw_in * compensation_gain ;
throttle_thrust = get_throttle ( ) * compensation_gain ;
throttle_avg_max = _throttle_avg_max * compensation_gain ;
2015-12-03 01:48:35 -04:00
// sanity check throttle is above zero and below current limited throttle
if ( throttle_thrust < = 0.0f ) {
throttle_thrust = 0.0f ;
2013-09-12 10:27:44 -03:00
limit . throttle_lower = true ;
}
2015-12-03 01:48:35 -04:00
if ( throttle_thrust > = _throttle_thrust_max ) {
throttle_thrust = _throttle_thrust_max ;
2013-09-12 10:27:44 -03:00
limit . throttle_upper = true ;
}
2013-05-26 23:21:31 -03:00
2017-10-04 08:36:43 -03:00
throttle_avg_max = constrain_float ( throttle_avg_max , throttle_thrust , _throttle_thrust_max ) ;
2013-05-26 23:21:31 -03:00
2015-12-03 01:48:35 -04:00
// calculate throttle that gives most possible room for yaw which is the lower of:
// 1. 0.5f - (rpy_low+rpy_high)/2.0 - this would give the maximum possible margin above the highest motor and below the lowest
2015-04-02 17:54:15 -03:00
// 2. the higher of:
// a) the pilot's throttle input
2015-12-03 01:48:35 -04:00
// b) the point _throttle_rpy_mix between the pilot's input throttle and hover-throttle
2015-04-02 17:54:15 -03:00
// Situation #2 ensure we never increase the throttle above hover throttle unless the pilot has commanded this.
// Situation #2b allows us to raise the throttle above what the pilot commanded but not so far that it would actually cause the copter to rise.
2015-12-03 01:48:35 -04:00
// We will choose #1 (the best throttle for yaw control) if that means reducing throttle to the motors (i.e. we favor reducing throttle *because* it provides better yaw control)
// We will choose #2 (a mix of pilot and hover throttle) only when the throttle is quite low. We favor reducing throttle instead of better yaw control because the pilot has commanded it
2015-04-02 17:54:15 -03:00
// calculate amount of yaw we can fit into the throttle range
// this is always equal to or less than the requested yaw from the pilot or rate controller
2015-12-03 01:48:35 -04:00
2017-10-04 08:36:43 -03:00
throttle_thrust_best_rpy = MIN ( 0.5f , throttle_avg_max ) ;
2015-12-03 01:48:35 -04:00
// calculate roll and pitch for each motor
// calculate the amount of yaw input that each motor can accept
for ( i = 0 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
if ( motor_enabled [ i ] ) {
_thrust_rpyt_out [ i ] = roll_thrust * _roll_factor [ i ] + pitch_thrust * _pitch_factor [ i ] ;
if ( ! is_zero ( _yaw_factor [ i ] ) ) {
if ( yaw_thrust * _yaw_factor [ i ] > 0.0f ) {
2017-10-04 08:36:43 -03:00
unused_range = fabsf ( MAX ( 1.0f - ( throttle_thrust_best_rpy + _thrust_rpyt_out [ i ] ) , 0.0f ) / _yaw_factor [ i ] ) ;
2015-12-03 01:48:35 -04:00
if ( yaw_allowed > unused_range ) {
yaw_allowed = unused_range ;
}
} else {
2017-10-04 08:36:43 -03:00
unused_range = fabsf ( MAX ( throttle_thrust_best_rpy + _thrust_rpyt_out [ i ] , 0.0f ) / _yaw_factor [ i ] ) ;
2015-12-03 01:48:35 -04:00
if ( yaw_allowed > unused_range ) {
yaw_allowed = unused_range ;
}
}
}
2013-05-26 23:21:31 -03:00
}
2015-04-02 17:54:15 -03:00
}
2013-05-26 23:21:31 -03:00
2015-12-03 01:48:35 -04:00
// todo: make _yaw_headroom 0 to 1
yaw_allowed = MAX ( yaw_allowed , ( float ) _yaw_headroom / 1000.0f ) ;
if ( fabsf ( yaw_thrust ) > yaw_allowed ) {
yaw_thrust = constrain_float ( yaw_thrust , - yaw_allowed , yaw_allowed ) ;
limit . yaw = true ;
}
2015-04-02 17:54:15 -03:00
// add yaw to intermediate numbers for each motor
2015-12-03 01:48:35 -04:00
rpy_low = 0.0f ;
rpy_high = 0.0f ;
2015-04-02 17:54:15 -03:00
for ( i = 0 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
if ( motor_enabled [ i ] ) {
2015-12-03 01:48:35 -04:00
_thrust_rpyt_out [ i ] = _thrust_rpyt_out [ i ] + yaw_thrust * _yaw_factor [ i ] ;
2013-05-26 23:21:31 -03:00
2015-04-02 17:54:15 -03:00
// record lowest roll+pitch+yaw command
2015-12-03 01:48:35 -04:00
if ( _thrust_rpyt_out [ i ] < rpy_low ) {
rpy_low = _thrust_rpyt_out [ i ] ;
2013-05-26 23:21:31 -03:00
}
2015-04-02 17:54:15 -03:00
// record highest roll+pitch+yaw command
2015-12-03 01:48:35 -04:00
if ( _thrust_rpyt_out [ i ] > rpy_high ) {
rpy_high = _thrust_rpyt_out [ i ] ;
2013-07-25 12:45:59 -03:00
}
2013-05-26 23:21:31 -03:00
}
2015-04-02 17:54:15 -03:00
}
2013-05-26 23:21:31 -03:00
2015-04-02 17:54:15 -03:00
// check everything fits
2017-10-04 08:36:43 -03:00
throttle_thrust_best_rpy = MIN ( 0.5f - ( rpy_low + rpy_high ) / 2.0 , throttle_avg_max ) ;
if ( is_zero ( rpy_low ) & & is_zero ( rpy_high ) ) {
2015-12-03 01:48:35 -04:00
rpy_scale = 1.0f ;
2017-10-04 08:36:43 -03:00
} else if ( is_zero ( rpy_low ) ) {
rpy_scale = constrain_float ( ( 1.0f - throttle_thrust_best_rpy ) / rpy_high , 0.0f , 1.0f ) ;
} else if ( is_zero ( rpy_high ) ) {
2015-12-03 01:48:35 -04:00
rpy_scale = constrain_float ( - throttle_thrust_best_rpy / rpy_low , 0.0f , 1.0f ) ;
2017-10-04 08:36:43 -03:00
} else {
rpy_scale = constrain_float ( MIN ( - throttle_thrust_best_rpy / rpy_low , ( 1.0f - throttle_thrust_best_rpy ) / rpy_high ) , 0.0f , 1.0f ) ;
2015-04-02 17:54:15 -03:00
}
2013-05-26 23:21:31 -03:00
2015-12-03 01:48:35 -04:00
// calculate how close the motors can come to the desired throttle
thr_adj = throttle_thrust - throttle_thrust_best_rpy ;
if ( rpy_scale < 1.0f ) {
// Full range is being used by roll, pitch, and yaw.
2015-04-02 17:54:15 -03:00
limit . roll_pitch = true ;
limit . yaw = true ;
2015-12-03 01:48:35 -04:00
if ( thr_adj > 0.0f ) {
limit . throttle_upper = true ;
2015-07-20 08:25:39 -03:00
}
2015-12-03 01:48:35 -04:00
thr_adj = 0.0f ;
} else {
if ( thr_adj < - ( throttle_thrust_best_rpy + rpy_low ) ) {
// Throttle can't be reduced to desired value
thr_adj = - ( throttle_thrust_best_rpy + rpy_low ) ;
} else if ( thr_adj > 1.0f - ( throttle_thrust_best_rpy + rpy_high ) ) {
// Throttle can't be increased to desired value
thr_adj = 1.0f - ( throttle_thrust_best_rpy + rpy_high ) ;
limit . throttle_upper = true ;
2013-05-26 23:21:31 -03:00
}
2015-04-02 17:54:15 -03:00
}
2013-05-26 23:21:31 -03:00
2015-12-03 01:48:35 -04:00
// add scaled roll, pitch, constrained yaw and throttle for each motor
2015-04-02 17:54:15 -03:00
for ( i = 0 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
if ( motor_enabled [ i ] ) {
2015-12-03 01:48:35 -04:00
_thrust_rpyt_out [ i ] = throttle_thrust_best_rpy + thr_adj + rpy_scale * _thrust_rpyt_out [ i ] ;
2013-05-26 23:21:31 -03:00
}
2015-04-02 17:54:15 -03:00
}
2015-02-21 03:55:13 -04:00
2015-12-03 01:48:35 -04:00
// constrain all outputs to 0.0f to 1.0f
// test code should be run with these lines commented out as they should not do anything
2015-04-02 17:54:15 -03:00
for ( i = 0 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
if ( motor_enabled [ i ] ) {
2015-12-03 01:48:35 -04:00
_thrust_rpyt_out [ i ] = constrain_float ( _thrust_rpyt_out [ i ] , 0.0f , 1.0f ) ;
2013-05-26 23:21:31 -03:00
}
}
}
2012-04-02 05:26:37 -03:00
2018-04-27 13:22:07 -03:00
// output_test_seq - spin a motor at the pwm value specified
2014-04-28 04:29:09 -03:00
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
2018-04-27 13:22:07 -03:00
void AP_MotorsMatrix : : output_test_seq ( uint8_t motor_seq , int16_t pwm )
2012-04-02 05:26:37 -03:00
{
2014-04-28 04:29:09 -03:00
// exit immediately if not armed
2015-04-02 17:54:15 -03:00
if ( ! armed ( ) ) {
2014-04-28 04:29:09 -03:00
return ;
2012-08-17 03:20:26 -03:00
}
// loop through all the possible orders spinning any motors that match that description
2014-04-28 04:29:09 -03:00
for ( uint8_t i = 0 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
if ( motor_enabled [ i ] & & _test_order [ i ] = = motor_seq ) {
// turn on this motor
2016-01-04 01:56:54 -04:00
rc_write ( i , pwm ) ;
2012-08-17 03:20:26 -03:00
}
}
2012-04-02 05:26:37 -03:00
}
2018-04-19 16:12:28 -03:00
// output_test_num - spin a motor connected to the specified output channel
// (should only be performed during testing)
// If a motor output channel is remapped, the mapped channel is used.
// Returns true if motor output is set, false otherwise
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
bool AP_MotorsMatrix : : output_test_num ( uint8_t output_channel , int16_t pwm )
{
if ( ! armed ( ) ) {
return false ;
}
// Is channel in supported range?
if ( output_channel > AP_MOTORS_MAX_NUM_MOTORS - 1 ) {
return false ;
}
// Is motor enabled?
if ( ! motor_enabled [ output_channel ] ) {
return false ;
}
rc_write ( output_channel , pwm ) ; // output
return true ;
}
2012-04-02 05:26:37 -03:00
// add_motor
2013-05-14 06:03:34 -03:00
void AP_MotorsMatrix : : add_motor_raw ( int8_t motor_num , float roll_fac , float pitch_fac , float yaw_fac , uint8_t testing_order )
2012-04-02 05:26:37 -03:00
{
2012-08-17 03:20:26 -03:00
// ensure valid motor number is provided
if ( motor_num > = 0 & & motor_num < AP_MOTORS_MAX_NUM_MOTORS ) {
// increment number of motors if this motor is being newly motor_enabled
if ( ! motor_enabled [ motor_num ] ) {
motor_enabled [ motor_num ] = true ;
}
// set roll, pitch, thottle factors and opposite motor (for stability patch)
_roll_factor [ motor_num ] = roll_fac ;
_pitch_factor [ motor_num ] = pitch_fac ;
_yaw_factor [ motor_num ] = yaw_fac ;
// set order that motor appears in test
2013-05-14 06:03:34 -03:00
_test_order [ motor_num ] = testing_order ;
2014-02-07 09:03:34 -04:00
2016-04-21 04:32:25 -03:00
// call parent class method
add_motor_num ( motor_num ) ;
2012-08-17 03:20:26 -03:00
}
2012-04-02 05:26:37 -03:00
}
2014-08-18 02:25:24 -03:00
// add_motor using just position and prop direction - assumes that for each motor, roll and pitch factors are equal
2013-05-14 06:03:34 -03:00
void AP_MotorsMatrix : : add_motor ( int8_t motor_num , float angle_degrees , float yaw_factor , uint8_t testing_order )
2012-04-02 05:26:37 -03:00
{
2014-08-18 02:25:24 -03:00
add_motor ( motor_num , angle_degrees , angle_degrees , yaw_factor , testing_order ) ;
}
// add_motor using position and prop direction. Roll and Pitch factors can differ (for asymmetrical frames)
void AP_MotorsMatrix : : add_motor ( int8_t motor_num , float roll_factor_in_degrees , float pitch_factor_in_degrees , float yaw_factor , uint8_t testing_order )
{
2012-08-17 03:20:26 -03:00
add_motor_raw (
motor_num ,
2014-08-18 02:25:24 -03:00
cosf ( radians ( roll_factor_in_degrees + 90 ) ) ,
cosf ( radians ( pitch_factor_in_degrees ) ) ,
yaw_factor ,
2012-08-17 03:20:26 -03:00
testing_order ) ;
2012-04-02 05:26:37 -03:00
}
// remove_motor - disabled motor and clears all roll, pitch, throttle factors for this motor
void AP_MotorsMatrix : : remove_motor ( int8_t motor_num )
{
2012-08-17 03:20:26 -03:00
// ensure valid motor number is provided
if ( motor_num > = 0 & & motor_num < AP_MOTORS_MAX_NUM_MOTORS ) {
// disable the motor, set all factors to zero
motor_enabled [ motor_num ] = false ;
_roll_factor [ motor_num ] = 0 ;
_pitch_factor [ motor_num ] = 0 ;
_yaw_factor [ motor_num ] = 0 ;
}
2012-04-02 05:26:37 -03:00
}
2016-12-14 01:46:42 -04:00
void AP_MotorsMatrix : : setup_motors ( motor_frame_class frame_class , motor_frame_type frame_type )
2012-04-02 05:26:37 -03:00
{
2016-12-14 01:46:42 -04:00
// remove existing motors
for ( int8_t i = 0 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
2012-08-17 03:20:26 -03:00
remove_motor ( i ) ;
}
2016-12-14 01:46:42 -04:00
bool success = false ;
switch ( frame_class ) {
case MOTOR_FRAME_QUAD :
switch ( frame_type ) {
case MOTOR_FRAME_TYPE_PLUS :
add_motor ( AP_MOTORS_MOT_1 , 90 , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 2 ) ;
add_motor ( AP_MOTORS_MOT_2 , - 90 , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 4 ) ;
add_motor ( AP_MOTORS_MOT_3 , 0 , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 1 ) ;
add_motor ( AP_MOTORS_MOT_4 , 180 , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 3 ) ;
success = true ;
break ;
case MOTOR_FRAME_TYPE_X :
add_motor ( AP_MOTORS_MOT_1 , 45 , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 1 ) ;
add_motor ( AP_MOTORS_MOT_2 , - 135 , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 3 ) ;
add_motor ( AP_MOTORS_MOT_3 , - 45 , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 4 ) ;
add_motor ( AP_MOTORS_MOT_4 , 135 , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 2 ) ;
success = true ;
break ;
case MOTOR_FRAME_TYPE_V :
add_motor ( AP_MOTORS_MOT_1 , 45 , 0.7981f , 1 ) ;
add_motor ( AP_MOTORS_MOT_2 , - 135 , 1.0000f , 3 ) ;
add_motor ( AP_MOTORS_MOT_3 , - 45 , - 0.7981f , 4 ) ;
add_motor ( AP_MOTORS_MOT_4 , 135 , - 1.0000f , 2 ) ;
success = true ;
break ;
case MOTOR_FRAME_TYPE_H :
// H frame set-up - same as X but motors spin in opposite directiSons
add_motor ( AP_MOTORS_MOT_1 , 45 , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 1 ) ;
add_motor ( AP_MOTORS_MOT_2 , - 135 , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 3 ) ;
add_motor ( AP_MOTORS_MOT_3 , - 45 , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 4 ) ;
add_motor ( AP_MOTORS_MOT_4 , 135 , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 2 ) ;
success = true ;
break ;
case MOTOR_FRAME_TYPE_VTAIL :
/*
Tested with : Lynxmotion Hunter Vtail 400
- inverted rear outward blowing motors ( at a 40 degree angle )
- should also work with non - inverted rear outward blowing motors
- no roll in rear motors
- no yaw in front motors
- should fly like some mix between a tricopter and X Quadcopter
Roll control comes only from the front motors , Yaw control only from the rear motors .
Roll & Pitch factor is measured by the angle away from the top of the forward axis to each arm .
Note : if we want the front motors to help with yaw ,
motors 1 ' s yaw factor should be changed to sin ( radians ( 40 ) ) . Where " 40 " is the vtail angle
motors 3 ' s yaw factor should be changed to - sin ( radians ( 40 ) )
*/
add_motor ( AP_MOTORS_MOT_1 , 60 , 60 , 0 , 1 ) ;
add_motor ( AP_MOTORS_MOT_2 , 0 , - 160 , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 3 ) ;
add_motor ( AP_MOTORS_MOT_3 , - 60 , - 60 , 0 , 4 ) ;
add_motor ( AP_MOTORS_MOT_4 , 0 , 160 , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 2 ) ;
success = true ;
break ;
case MOTOR_FRAME_TYPE_ATAIL :
/*
The A - Shaped VTail is the exact same as a V - Shaped VTail , with one difference :
- The Yaw factors are reversed , because the rear motors are facing different directions
With V - Shaped VTails , the props make a V - Shape when spinning , but with
A - Shaped VTails , the props make an A - Shape when spinning .
- Rear thrust on a V - Shaped V - Tail Quad is outward
- Rear thrust on an A - Shaped V - Tail Quad is inward
Still functions the same as the V - Shaped VTail mixing below :
- Yaw control is entirely in the rear motors
- Roll is is entirely in the front motors
*/
add_motor ( AP_MOTORS_MOT_1 , 60 , 60 , 0 , 1 ) ;
add_motor ( AP_MOTORS_MOT_2 , 0 , - 160 , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 3 ) ;
add_motor ( AP_MOTORS_MOT_3 , - 60 , - 60 , 0 , 4 ) ;
add_motor ( AP_MOTORS_MOT_4 , 0 , 160 , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 2 ) ;
success = true ;
break ;
default :
// quad frame class does not support this frame type
break ;
}
break ; // quad
case MOTOR_FRAME_HEXA :
switch ( frame_type ) {
case MOTOR_FRAME_TYPE_PLUS :
add_motor ( AP_MOTORS_MOT_1 , 0 , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 1 ) ;
add_motor ( AP_MOTORS_MOT_2 , 180 , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 4 ) ;
add_motor ( AP_MOTORS_MOT_3 , - 120 , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 5 ) ;
add_motor ( AP_MOTORS_MOT_4 , 60 , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 2 ) ;
add_motor ( AP_MOTORS_MOT_5 , - 60 , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 6 ) ;
add_motor ( AP_MOTORS_MOT_6 , 120 , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 3 ) ;
success = true ;
break ;
case MOTOR_FRAME_TYPE_X :
add_motor ( AP_MOTORS_MOT_1 , 90 , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 2 ) ;
add_motor ( AP_MOTORS_MOT_2 , - 90 , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 5 ) ;
add_motor ( AP_MOTORS_MOT_3 , - 30 , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 6 ) ;
add_motor ( AP_MOTORS_MOT_4 , 150 , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 3 ) ;
add_motor ( AP_MOTORS_MOT_5 , 30 , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 1 ) ;
add_motor ( AP_MOTORS_MOT_6 , - 150 , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 4 ) ;
success = true ;
break ;
default :
// hexa frame class does not support this frame type
break ;
}
break ;
case MOTOR_FRAME_OCTA :
switch ( frame_type ) {
case MOTOR_FRAME_TYPE_PLUS :
add_motor ( AP_MOTORS_MOT_1 , 0 , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 1 ) ;
add_motor ( AP_MOTORS_MOT_2 , 180 , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 5 ) ;
add_motor ( AP_MOTORS_MOT_3 , 45 , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 2 ) ;
add_motor ( AP_MOTORS_MOT_4 , 135 , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 4 ) ;
add_motor ( AP_MOTORS_MOT_5 , - 45 , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 8 ) ;
add_motor ( AP_MOTORS_MOT_6 , - 135 , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 6 ) ;
add_motor ( AP_MOTORS_MOT_7 , - 90 , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 7 ) ;
add_motor ( AP_MOTORS_MOT_8 , 90 , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 3 ) ;
success = true ;
break ;
case MOTOR_FRAME_TYPE_X :
add_motor ( AP_MOTORS_MOT_1 , 22.5f , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 1 ) ;
add_motor ( AP_MOTORS_MOT_2 , - 157.5f , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 5 ) ;
add_motor ( AP_MOTORS_MOT_3 , 67.5f , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 2 ) ;
add_motor ( AP_MOTORS_MOT_4 , 157.5f , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 4 ) ;
add_motor ( AP_MOTORS_MOT_5 , - 22.5f , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 8 ) ;
add_motor ( AP_MOTORS_MOT_6 , - 112.5f , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 6 ) ;
add_motor ( AP_MOTORS_MOT_7 , - 67.5f , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 7 ) ;
add_motor ( AP_MOTORS_MOT_8 , 112.5f , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 3 ) ;
success = true ;
break ;
case MOTOR_FRAME_TYPE_V :
add_motor_raw ( AP_MOTORS_MOT_1 , 1.0f , 0.34f , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 7 ) ;
add_motor_raw ( AP_MOTORS_MOT_2 , - 1.0f , - 0.32f , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 3 ) ;
add_motor_raw ( AP_MOTORS_MOT_3 , 1.0f , - 0.32f , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 6 ) ;
add_motor_raw ( AP_MOTORS_MOT_4 , - 0.5f , - 1.0f , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 4 ) ;
add_motor_raw ( AP_MOTORS_MOT_5 , 1.0f , 1.0f , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 8 ) ;
add_motor_raw ( AP_MOTORS_MOT_6 , - 1.0f , 0.34f , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 2 ) ;
add_motor_raw ( AP_MOTORS_MOT_7 , - 1.0f , 1.0f , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 1 ) ;
add_motor_raw ( AP_MOTORS_MOT_8 , 0.5f , - 1.0f , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 5 ) ;
success = true ;
break ;
2017-02-08 23:29:23 -04:00
case MOTOR_FRAME_TYPE_H :
2017-02-09 21:39:57 -04:00
add_motor_raw ( AP_MOTORS_MOT_1 , - 1.0f , 1.0f , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 1 ) ;
add_motor_raw ( AP_MOTORS_MOT_2 , 1.0f , - 1.0f , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 5 ) ;
add_motor_raw ( AP_MOTORS_MOT_3 , - 1.0f , 0.333f , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 2 ) ;
add_motor_raw ( AP_MOTORS_MOT_4 , - 1.0f , - 1.0f , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 4 ) ;
add_motor_raw ( AP_MOTORS_MOT_5 , 1.0f , 1.0f , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 8 ) ;
add_motor_raw ( AP_MOTORS_MOT_6 , 1.0f , - 0.333f , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 6 ) ;
add_motor_raw ( AP_MOTORS_MOT_7 , 1.0f , 0.333f , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 7 ) ;
add_motor_raw ( AP_MOTORS_MOT_8 , - 1.0f , - 0.333f , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 3 ) ;
2017-02-08 23:29:23 -04:00
success = true ;
break ;
2016-12-14 01:46:42 -04:00
default :
// octa frame class does not support this frame type
break ;
} // octa frame type
break ;
case MOTOR_FRAME_OCTAQUAD :
switch ( frame_type ) {
case MOTOR_FRAME_TYPE_PLUS :
add_motor ( AP_MOTORS_MOT_1 , 0 , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 1 ) ;
add_motor ( AP_MOTORS_MOT_2 , - 90 , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 7 ) ;
add_motor ( AP_MOTORS_MOT_3 , 180 , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 5 ) ;
add_motor ( AP_MOTORS_MOT_4 , 90 , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 3 ) ;
add_motor ( AP_MOTORS_MOT_5 , - 90 , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 8 ) ;
add_motor ( AP_MOTORS_MOT_6 , 0 , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 2 ) ;
add_motor ( AP_MOTORS_MOT_7 , 90 , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 4 ) ;
add_motor ( AP_MOTORS_MOT_8 , 180 , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 6 ) ;
success = true ;
break ;
case MOTOR_FRAME_TYPE_X :
add_motor ( AP_MOTORS_MOT_1 , 45 , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 1 ) ;
add_motor ( AP_MOTORS_MOT_2 , - 45 , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 7 ) ;
add_motor ( AP_MOTORS_MOT_3 , - 135 , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 5 ) ;
add_motor ( AP_MOTORS_MOT_4 , 135 , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 3 ) ;
add_motor ( AP_MOTORS_MOT_5 , - 45 , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 8 ) ;
add_motor ( AP_MOTORS_MOT_6 , 45 , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 2 ) ;
add_motor ( AP_MOTORS_MOT_7 , 135 , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 4 ) ;
add_motor ( AP_MOTORS_MOT_8 , - 135 , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 6 ) ;
success = true ;
break ;
case MOTOR_FRAME_TYPE_V :
add_motor ( AP_MOTORS_MOT_1 , 45 , 0.7981f , 1 ) ;
add_motor ( AP_MOTORS_MOT_2 , - 45 , - 0.7981f , 7 ) ;
add_motor ( AP_MOTORS_MOT_3 , - 135 , 1.0000f , 5 ) ;
add_motor ( AP_MOTORS_MOT_4 , 135 , - 1.0000f , 3 ) ;
add_motor ( AP_MOTORS_MOT_5 , - 45 , 0.7981f , 8 ) ;
add_motor ( AP_MOTORS_MOT_6 , 45 , - 0.7981f , 2 ) ;
add_motor ( AP_MOTORS_MOT_7 , 135 , 1.0000f , 4 ) ;
add_motor ( AP_MOTORS_MOT_8 , - 135 , - 1.0000f , 6 ) ;
success = true ;
break ;
case MOTOR_FRAME_TYPE_H :
// H frame set-up - same as X but motors spin in opposite directions
add_motor ( AP_MOTORS_MOT_1 , 45 , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 1 ) ;
add_motor ( AP_MOTORS_MOT_2 , - 45 , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 7 ) ;
add_motor ( AP_MOTORS_MOT_3 , - 135 , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 5 ) ;
add_motor ( AP_MOTORS_MOT_4 , 135 , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 3 ) ;
add_motor ( AP_MOTORS_MOT_5 , - 45 , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 8 ) ;
add_motor ( AP_MOTORS_MOT_6 , 45 , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 2 ) ;
add_motor ( AP_MOTORS_MOT_7 , 135 , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 4 ) ;
add_motor ( AP_MOTORS_MOT_8 , - 135 , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 6 ) ;
success = true ;
break ;
default :
// octaquad frame class does not support this frame type
break ;
}
break ;
2017-05-13 22:15:49 -03:00
case MOTOR_FRAME_DODECAHEXA : {
switch ( frame_type ) {
case MOTOR_FRAME_TYPE_PLUS :
add_motor ( AP_MOTORS_MOT_1 , 0 , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 1 ) ; // forward-top
add_motor ( AP_MOTORS_MOT_2 , 0 , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 2 ) ; // forward-bottom
add_motor ( AP_MOTORS_MOT_3 , 60 , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 3 ) ; // forward-right-top
add_motor ( AP_MOTORS_MOT_4 , 60 , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 4 ) ; // forward-right-bottom
add_motor ( AP_MOTORS_MOT_5 , 120 , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 5 ) ; // back-right-top
add_motor ( AP_MOTORS_MOT_6 , 120 , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 6 ) ; // back-right-bottom
add_motor ( AP_MOTORS_MOT_7 , 180 , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 7 ) ; // back-top
add_motor ( AP_MOTORS_MOT_8 , 180 , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 8 ) ; // back-bottom
add_motor ( AP_MOTORS_MOT_9 , - 120 , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 9 ) ; // back-left-top
add_motor ( AP_MOTORS_MOT_10 , - 120 , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 10 ) ; // back-left-bottom
add_motor ( AP_MOTORS_MOT_11 , - 60 , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 11 ) ; // forward-left-top
add_motor ( AP_MOTORS_MOT_12 , - 60 , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 12 ) ; // forward-left-bottom
success = true ;
break ;
case MOTOR_FRAME_TYPE_X :
add_motor ( AP_MOTORS_MOT_1 , 30 , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 1 ) ; // forward-right-top
add_motor ( AP_MOTORS_MOT_2 , 30 , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 2 ) ; // forward-right-bottom
add_motor ( AP_MOTORS_MOT_3 , 90 , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 3 ) ; // right-top
add_motor ( AP_MOTORS_MOT_4 , 90 , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 4 ) ; // right-bottom
add_motor ( AP_MOTORS_MOT_5 , 150 , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 5 ) ; // back-right-top
add_motor ( AP_MOTORS_MOT_6 , 150 , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 6 ) ; // back-right-bottom
add_motor ( AP_MOTORS_MOT_7 , - 150 , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 7 ) ; // back-left-top
add_motor ( AP_MOTORS_MOT_8 , - 150 , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 8 ) ; // back-left-bottom
add_motor ( AP_MOTORS_MOT_9 , - 90 , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 9 ) ; // left-top
add_motor ( AP_MOTORS_MOT_10 , - 90 , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 10 ) ; // left-bottom
add_motor ( AP_MOTORS_MOT_11 , - 30 , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 11 ) ; // forward-left-top
add_motor ( AP_MOTORS_MOT_12 , - 30 , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 12 ) ; // forward-left-bottom
success = true ;
break ;
default :
// dodeca-hexa frame class does not support this frame type
break ;
} }
break ;
2016-12-14 01:46:42 -04:00
case MOTOR_FRAME_Y6 :
switch ( frame_type ) {
2016-12-15 07:02:06 -04:00
case MOTOR_FRAME_TYPE_Y6B :
2016-12-14 01:46:42 -04:00
// Y6 motor definition with all top motors spinning clockwise, all bottom motors counter clockwise
add_motor_raw ( AP_MOTORS_MOT_1 , - 1.0f , 0.500f , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 1 ) ;
add_motor_raw ( AP_MOTORS_MOT_2 , - 1.0f , 0.500f , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 2 ) ;
add_motor_raw ( AP_MOTORS_MOT_3 , 0.0f , - 1.000f , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 3 ) ;
add_motor_raw ( AP_MOTORS_MOT_4 , 0.0f , - 1.000f , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 4 ) ;
add_motor_raw ( AP_MOTORS_MOT_5 , 1.0f , 0.500f , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 5 ) ;
add_motor_raw ( AP_MOTORS_MOT_6 , 1.0f , 0.500f , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 6 ) ;
success = true ;
break ;
2017-02-06 00:01:51 -04:00
case MOTOR_FRAME_TYPE_Y6F :
// Y6 motor layout for FireFlyY6
add_motor_raw ( AP_MOTORS_MOT_1 , 0.0f , - 1.000f , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 3 ) ;
add_motor_raw ( AP_MOTORS_MOT_2 , - 1.0f , 0.500f , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 1 ) ;
add_motor_raw ( AP_MOTORS_MOT_3 , 1.0f , 0.500f , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 5 ) ;
add_motor_raw ( AP_MOTORS_MOT_4 , 0.0f , - 1.000f , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 4 ) ;
add_motor_raw ( AP_MOTORS_MOT_5 , - 1.0f , 0.500f , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 2 ) ;
add_motor_raw ( AP_MOTORS_MOT_6 , 1.0f , 0.500f , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 6 ) ;
success = true ;
break ;
2016-12-14 01:46:42 -04:00
default :
add_motor_raw ( AP_MOTORS_MOT_1 , - 1.0f , 0.666f , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 2 ) ;
add_motor_raw ( AP_MOTORS_MOT_2 , 1.0f , 0.666f , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 5 ) ;
add_motor_raw ( AP_MOTORS_MOT_3 , 1.0f , 0.666f , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 6 ) ;
add_motor_raw ( AP_MOTORS_MOT_4 , 0.0f , - 1.333f , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 4 ) ;
add_motor_raw ( AP_MOTORS_MOT_5 , - 1.0f , 0.666f , AP_MOTORS_MATRIX_YAW_FACTOR_CW , 1 ) ;
add_motor_raw ( AP_MOTORS_MOT_6 , 0.0f , - 1.333f , AP_MOTORS_MATRIX_YAW_FACTOR_CCW , 3 ) ;
success = true ;
break ;
}
break ;
default :
// matrix doesn't support the configured class
break ;
} // switch frame_class
// normalise factors to magnitude 0.5
normalise_rpy_factors ( ) ;
_flags . initialised_ok = success ;
2012-10-26 20:59:07 -03:00
}
2016-02-04 07:45:49 -04:00
// normalizes the roll, pitch and yaw factors so maximum magnitude is 0.5
void AP_MotorsMatrix : : normalise_rpy_factors ( )
{
float roll_fac = 0.0f ;
float pitch_fac = 0.0f ;
float yaw_fac = 0.0f ;
// find maximum roll, pitch and yaw factors
for ( uint8_t i = 0 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
if ( motor_enabled [ i ] ) {
if ( roll_fac < fabsf ( _roll_factor [ i ] ) ) {
roll_fac = fabsf ( _roll_factor [ i ] ) ;
}
if ( pitch_fac < fabsf ( _pitch_factor [ i ] ) ) {
pitch_fac = fabsf ( _pitch_factor [ i ] ) ;
}
if ( yaw_fac < fabsf ( _yaw_factor [ i ] ) ) {
yaw_fac = fabsf ( _yaw_factor [ i ] ) ;
}
}
}
// scale factors back to -0.5 to +0.5 for each axis
for ( uint8_t i = 0 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
if ( motor_enabled [ i ] ) {
if ( ! is_zero ( roll_fac ) ) {
_roll_factor [ i ] = 0.5f * _roll_factor [ i ] / roll_fac ;
}
if ( ! is_zero ( pitch_fac ) ) {
_pitch_factor [ i ] = 0.5f * _pitch_factor [ i ] / pitch_fac ;
}
if ( ! is_zero ( yaw_fac ) ) {
_yaw_factor [ i ] = 0.5f * _yaw_factor [ i ] / yaw_fac ;
}
}
}
}
2016-05-01 19:00:45 -03:00
/*
call vehicle supplied thrust compensation if set . This allows
vehicle code to compensate for vehicle specific motor arrangements
such as tiltrotors or tiltwings
*/
void AP_MotorsMatrix : : thrust_compensation ( void )
{
if ( _thrust_compensation_callback ) {
_thrust_compensation_callback ( _thrust_rpyt_out , AP_MOTORS_MAX_NUM_MOTORS ) ;
}
}