ardupilot/ArduCopter/control_rtl.pde

393 lines
12 KiB
Plaintext
Raw Normal View History

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
* control_rtl.pde - init and run calls for RTL flight mode
2014-01-25 04:24:43 -04:00
*
* There are two parts to RTL, the high level decision making which controls which state we are in
* and the lower implementation of the waypoint or landing controllers within those states
*/
// rtl_init - initialise rtl controller
static bool rtl_init(bool ignore_checks)
{
if (GPS_ok() || ignore_checks) {
2014-01-25 04:24:43 -04:00
rtl_climb_start();
return true;
}else{
return false;
}
}
// rtl_run - runs the return-to-launch controller
// should be called at 100hz or more
static void rtl_run()
{
2014-01-25 04:24:43 -04:00
// check if we need to move to next state
if (rtl_state_complete) {
switch (rtl_state) {
case InitialClimb:
rtl_return_start();
break;
case ReturnHome:
rtl_loiterathome_start();
break;
case LoiterAtHome:
if (g.rtl_alt_final > 0 && !failsafe.radio) {
2014-01-25 04:24:43 -04:00
rtl_descent_start();
}else{
rtl_land_start();
}
break;
case FinalDescent:
// do nothing
break;
case Land:
// do nothing - rtl_land_run will take care of disarming motors
2014-01-25 04:24:43 -04:00
break;
}
}
// call the correct run function
switch (rtl_state) {
case InitialClimb:
rtl_climb_return_run();
2014-01-25 04:24:43 -04:00
break;
case ReturnHome:
rtl_climb_return_run();
2014-01-25 04:24:43 -04:00
break;
case LoiterAtHome:
rtl_loiterathome_run();
break;
case FinalDescent:
rtl_descent_run();
2014-01-25 04:24:43 -04:00
break;
case Land:
rtl_land_run();
break;
}
}
// rtl_climb_start - initialise climb to RTL altitude
static void rtl_climb_start()
{
rtl_state = InitialClimb;
rtl_state_complete = false;
2014-05-07 03:03:00 -03:00
// initialise waypoint and spline controller
wp_nav.wp_and_spline_init();
2014-01-25 04:24:43 -04:00
// get horizontal stopping point
Vector3f destination;
wp_nav.get_wp_stopping_point_xy(destination);
2014-04-06 22:18:43 -03:00
#if AC_RALLY == ENABLED
// rally_point.alt will be max of RTL_ALT and the height of the nearest rally point (if there is one)
Location rally_point = rally.calc_best_rally_or_home_location(current_loc, get_RTL_alt());
destination.z = rally_point.alt;
#else
2014-01-25 04:24:43 -04:00
destination.z = get_RTL_alt();
2014-04-06 22:18:43 -03:00
#endif
2014-01-25 04:24:43 -04:00
2014-05-07 03:03:00 -03:00
// set the destination
2014-01-25 04:24:43 -04:00
wp_nav.set_wp_destination(destination);
2014-05-07 03:03:00 -03:00
wp_nav.set_fast_waypoint(true);
2014-01-25 04:24:43 -04:00
// hold current yaw during initial climb
set_auto_yaw_mode(AUTO_YAW_HOLD);
}
// rtl_return_start - initialise return to home
static void rtl_return_start()
{
rtl_state = ReturnHome;
rtl_state_complete = false;
2014-04-06 22:18:43 -03:00
// set target to above home/rally point
#if AC_RALLY == ENABLED
Vector3f destination = pv_location_to_vector(rally.calc_best_rally_or_home_location(current_loc, get_RTL_alt()));
#else
2014-01-25 04:24:43 -04:00
Vector3f destination = Vector3f(0,0,get_RTL_alt());
2014-04-06 22:18:43 -03:00
#endif
2014-01-25 04:24:43 -04:00
wp_nav.set_wp_destination(destination);
// initialise yaw to point home (maybe)
set_auto_yaw_mode(get_default_auto_yaw_mode(true));
}
// rtl_climb_return_run - implements the initial climb, return home and descent portions of RTL which all rely on the wp controller
2014-01-25 04:24:43 -04:00
// called by rtl_run at 100hz or more
static void rtl_climb_return_run()
2014-01-25 04:24:43 -04:00
{
// if not auto armed set throttle to zero and exit immediately
if(!ap.auto_armed) {
// reset attitude control targets
attitude_control.relax_bf_rate_controller();
attitude_control.set_yaw_target_to_current_heading();
2014-01-25 04:24:43 -04:00
attitude_control.set_throttle_out(0, false);
// To-Do: re-initialise wpnav targets
return;
}
// process pilot's yaw input
float target_yaw_rate = 0;
if (!failsafe.radio) {
// get pilot's desired yaw rate
target_yaw_rate = get_pilot_desired_yaw_rate(g.rc_4.control_in);
if (target_yaw_rate != 0) {
set_auto_yaw_mode(AUTO_YAW_HOLD);
}
}
// run waypoint controller
wp_nav.update_wpnav();
// call z-axis position controller (wpnav should have already updated it's alt target)
pos_control.update_z_controller();
// call attitude controller
if (auto_yaw_mode == AUTO_YAW_HOLD) {
// roll & pitch from waypoint controller, yaw rate from pilot
attitude_control.angle_ef_roll_pitch_rate_ef_yaw(wp_nav.get_roll(), wp_nav.get_pitch(), target_yaw_rate);
2014-01-25 04:24:43 -04:00
}else{
// roll, pitch from waypoint controller, yaw heading from auto_heading()
attitude_control.angle_ef_roll_pitch_yaw(wp_nav.get_roll(), wp_nav.get_pitch(), get_auto_heading(),true);
2014-01-25 04:24:43 -04:00
}
// check if we've completed this stage of RTL
rtl_state_complete = wp_nav.reached_wp_destination();
}
// rtl_return_start - initialise return to home
static void rtl_loiterathome_start()
{
rtl_state = LoiterAtHome;
rtl_state_complete = false;
rtl_loiter_start_time = millis();
// yaw back to initial take-off heading yaw unless pilot has already overridden yaw
if(get_default_auto_yaw_mode(true) != AUTO_YAW_HOLD) {
set_auto_yaw_mode(AUTO_YAW_RESETTOARMEDYAW);
} else {
set_auto_yaw_mode(AUTO_YAW_HOLD);
}
}
// rtl_climb_return_descent_run - implements the initial climb, return home and descent portions of RTL which all rely on the wp controller
// called by rtl_run at 100hz or more
static void rtl_loiterathome_run()
{
// if not auto armed set throttle to zero and exit immediately
if(!ap.auto_armed) {
// reset attitude control targets
attitude_control.relax_bf_rate_controller();
attitude_control.set_yaw_target_to_current_heading();
2014-01-25 04:24:43 -04:00
attitude_control.set_throttle_out(0, false);
// To-Do: re-initialise wpnav targets
return;
}
// process pilot's yaw input
float target_yaw_rate = 0;
if (!failsafe.radio) {
// get pilot's desired yaw rate
target_yaw_rate = get_pilot_desired_yaw_rate(g.rc_4.control_in);
if (target_yaw_rate != 0) {
set_auto_yaw_mode(AUTO_YAW_HOLD);
}
}
// run waypoint controller
wp_nav.update_wpnav();
// call z-axis position controller (wpnav should have already updated it's alt target)
pos_control.update_z_controller();
// call attitude controller
if (auto_yaw_mode == AUTO_YAW_HOLD) {
// roll & pitch from waypoint controller, yaw rate from pilot
attitude_control.angle_ef_roll_pitch_rate_ef_yaw(wp_nav.get_roll(), wp_nav.get_pitch(), target_yaw_rate);
2014-01-25 04:24:43 -04:00
}else{
// roll, pitch from waypoint controller, yaw heading from auto_heading()
attitude_control.angle_ef_roll_pitch_yaw(wp_nav.get_roll(), wp_nav.get_pitch(), get_auto_heading(),true);
2014-01-25 04:24:43 -04:00
}
// check if we've completed this stage of RTL
if ((millis() - rtl_loiter_start_time) >= (uint32_t)g.rtl_loiter_time.get()) {
if (auto_yaw_mode == AUTO_YAW_RESETTOARMEDYAW) {
// check if heading is within 2 degrees of heading when vehicle was armed
if (labs(wrap_180_cd(ahrs.yaw_sensor-initial_armed_bearing)) <= 200) {
rtl_state_complete = true;
}
} else {
// we have loitered long enough
rtl_state_complete = true;
}
}
2014-01-25 04:24:43 -04:00
}
// rtl_descent_start - initialise descent to final alt
static void rtl_descent_start()
{
rtl_state = FinalDescent;
rtl_state_complete = false;
// Set wp navigation target to above home
wp_nav.init_loiter_target(wp_nav.get_wp_destination());
// initialise altitude target to stopping point
pos_control.set_target_to_stopping_point_z();
// initialise yaw
set_auto_yaw_mode(AUTO_YAW_HOLD);
}
// rtl_descent_run - implements the final descent to the RTL_ALT
// called by rtl_run at 100hz or more
static void rtl_descent_run()
{
int16_t roll_control = 0, pitch_control = 0;
float target_yaw_rate = 0;
// if not auto armed set throttle to zero and exit immediately
if(!ap.auto_armed || !inertial_nav.position_ok()) {
attitude_control.relax_bf_rate_controller();
attitude_control.set_yaw_target_to_current_heading();
attitude_control.set_throttle_out(0, false);
// set target to current position
wp_nav.init_loiter_target();
return;
}
// process pilot's input
if (!failsafe.radio) {
if (g.land_repositioning) {
// apply SIMPLE mode transform to pilot inputs
update_simple_mode();
// process pilot's roll and pitch input
roll_control = g.rc_1.control_in;
pitch_control = g.rc_2.control_in;
}
// get pilot's desired yaw rate
target_yaw_rate = get_pilot_desired_yaw_rate(g.rc_4.control_in);
}
// process roll, pitch inputs
wp_nav.set_pilot_desired_acceleration(roll_control, pitch_control);
// run loiter controller
wp_nav.update_loiter();
// call z-axis position controller
pos_control.set_alt_target_with_slew(g.rtl_alt_final, G_Dt);
pos_control.update_z_controller();
// roll & pitch from waypoint controller, yaw rate from pilot
attitude_control.angle_ef_roll_pitch_rate_ef_yaw(wp_nav.get_roll(), wp_nav.get_pitch(), target_yaw_rate);
// check if we've reached within 20cm of final altitude
rtl_state_complete = fabs(g.rtl_alt_final - inertial_nav.get_altitude()) < 20.0f;
}
2014-01-25 04:24:43 -04:00
// rtl_loiterathome_start - initialise controllers to loiter over home
static void rtl_land_start()
{
rtl_state = Land;
rtl_state_complete = false;
// Set wp navigation target to above home
wp_nav.init_loiter_target(wp_nav.get_wp_destination());
2014-01-25 04:24:43 -04:00
// initialise altitude target to stopping point
pos_control.set_target_to_stopping_point_z();
// initialise yaw
set_auto_yaw_mode(AUTO_YAW_HOLD);
}
// rtl_returnhome_run - return home
// called by rtl_run at 100hz or more
static void rtl_land_run()
{
int16_t roll_control = 0, pitch_control = 0;
float target_yaw_rate = 0;
2014-01-25 04:24:43 -04:00
// if not auto armed set throttle to zero and exit immediately
if(!ap.auto_armed || !inertial_nav.position_ok()) {
attitude_control.relax_bf_rate_controller();
attitude_control.set_yaw_target_to_current_heading();
2014-01-25 04:24:43 -04:00
attitude_control.set_throttle_out(0, false);
// set target to current position
wp_nav.init_loiter_target();
return;
}
// process pilot's input
2014-01-25 04:24:43 -04:00
if (!failsafe.radio) {
if (g.land_repositioning) {
// apply SIMPLE mode transform to pilot inputs
update_simple_mode();
// process pilot's roll and pitch input
roll_control = g.rc_1.control_in;
pitch_control = g.rc_2.control_in;
}
2014-01-25 04:24:43 -04:00
// get pilot's desired yaw rate
target_yaw_rate = get_pilot_desired_yaw_rate(g.rc_4.control_in);
}
// process pilot's roll and pitch input
wp_nav.set_pilot_desired_acceleration(roll_control, pitch_control);
2014-01-25 04:24:43 -04:00
// run loiter controller
wp_nav.update_loiter();
// call z-axis position controller
float cmb_rate = get_throttle_land();
pos_control.set_alt_target_from_climb_rate(cmb_rate, G_Dt);
pos_control.update_z_controller();
// roll & pitch from waypoint controller, yaw rate from pilot
attitude_control.angle_ef_roll_pitch_rate_ef_yaw(wp_nav.get_roll(), wp_nav.get_pitch(), target_yaw_rate);
2014-01-25 04:24:43 -04:00
// check if we've completed this stage of RTL
rtl_state_complete = ap.land_complete;
#if LAND_REQUIRE_MIN_THROTTLE_TO_DISARM == ENABLED
// disarm when the landing detector says we've landed and throttle is at minimum
if (ap.land_complete && (g.rc_3.control_in == 0 || failsafe.radio)) {
init_disarm_motors();
}
#else
// disarm when the landing detector says we've landed
if (ap.land_complete) {
init_disarm_motors();
}
#endif
}
// get_RTL_alt - return altitude which vehicle should return home at
// altitude is in cm above home
static float get_RTL_alt()
{
// maximum of current altitude and rtl altitude
float rtl_alt = max(current_loc.alt, g.rtl_altitude);
#if AC_FENCE == ENABLED
// ensure not above fence altitude if alt fence is enabled
if ((fence.get_enabled_fences() & AC_FENCE_TYPE_ALT_MAX) != 0) {
rtl_alt = min(rtl_alt, fence.get_safe_alt()*100.0f);
}
#endif
return rtl_alt;
}