ardupilot/libraries/AP_Baro/AP_Baro_LPS2XH.cpp

283 lines
7.5 KiB
C++
Raw Normal View History

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "AP_Baro_LPS2XH.h"
#if AP_BARO_LPS2XH_ENABLED
#include <utility>
#include <stdio.h>
2018-02-15 00:00:23 -04:00
#include <AP_InertialSensor/AP_InertialSensor_Invensense_registers.h>
extern const AP_HAL::HAL &hal;
2018-02-15 00:00:23 -04:00
// WHOAMI values
#define LPS22HB_WHOAMI 0xB1
#define LPS25HB_WHOAMI 0xBD
2019-09-24 04:23:07 -03:00
#define REG_ID 0x0F
#define LPS22H_ID 0xB1
#define LPS22H_CTRL_REG1 0x10
#define LPS22H_CTRL_REG2 0x11
#define LPS22H_CTRL_REG3 0x12
#define LPS22H_CTRL_REG1_SIM (1 << 0)
#define LPS22H_CTRL_REG1_BDU (1 << 1)
#define LPS22H_CTRL_REG1_LPFP_CFG (1 << 2)
#define LPS22H_CTRL_REG1_EN_LPFP (1 << 3)
#define LPS22H_CTRL_REG1_PD (0 << 4)
#define LPS22H_CTRL_REG1_ODR_1H (1 << 4)
#define LPS22H_CTRL_REG1_ODR_10HZ (2 << 4)
#define LPS22H_CTRL_REG1_ODR_25HZ (3 << 4)
#define LPS22H_CTRL_REG1_ODR_50HZ (4 << 4)
#define LPS22H_CTRL_REG1_ODR_75HZ (5 << 4)
#define LPS25H_CTRL_REG1_ADDR 0x20
#define LPS25H_CTRL_REG2_ADDR 0x21
#define LPS25H_CTRL_REG3_ADDR 0x22
#define LPS25H_CTRL_REG4_ADDR 0x23
#define LPS25H_FIFO_CTRL 0x2E
#define TEMP_OUT_ADDR 0x2B
#define PRESS_OUT_XL_ADDR 0x28
#define STATUS_ADDR 0x27
//putting 1 in the MSB of those two registers turns on Auto increment for faster reading.
AP_Baro_LPS2XH::AP_Baro_LPS2XH(AP_Baro &baro, AP_HAL::OwnPtr<AP_HAL::Device> dev)
: AP_Baro_Backend(baro)
, _dev(std::move(dev))
{
}
AP_Baro_Backend *AP_Baro_LPS2XH::probe(AP_Baro &baro,
AP_HAL::OwnPtr<AP_HAL::Device> dev)
{
if (!dev) {
return nullptr;
}
2019-09-24 04:23:07 -03:00
AP_Baro_LPS2XH *sensor = NEW_NOTHROW AP_Baro_LPS2XH(baro, std::move(dev));
if (!sensor || !sensor->_init()) {
delete sensor;
return nullptr;
}
2019-09-24 04:23:07 -03:00
return sensor;
}
2018-02-15 00:00:23 -04:00
AP_Baro_Backend *AP_Baro_LPS2XH::probe_InvensenseIMU(AP_Baro &baro,
AP_HAL::OwnPtr<AP_HAL::Device> dev,
uint8_t imu_address)
{
if (!dev) {
return nullptr;
}
2019-09-24 04:23:07 -03:00
AP_Baro_LPS2XH *sensor = NEW_NOTHROW AP_Baro_LPS2XH(baro, std::move(dev));
2018-02-15 00:00:23 -04:00
if (sensor) {
if (!sensor->_imu_i2c_init(imu_address)) {
delete sensor;
return nullptr;
}
}
2019-09-24 04:23:07 -03:00
2018-02-15 00:00:23 -04:00
if (!sensor || !sensor->_init()) {
delete sensor;
return nullptr;
}
2019-09-24 04:23:07 -03:00
2018-02-15 00:00:23 -04:00
return sensor;
}
/*
setup invensense IMU to enable barometer, assuming both IMU and baro
on the same i2c bus
*/
bool AP_Baro_LPS2XH::_imu_i2c_init(uint8_t imu_address)
{
_dev->get_semaphore()->take_blocking();
2019-09-24 04:23:07 -03:00
2018-02-15 00:00:23 -04:00
// as the baro device is already locked we need to re-use it,
// changing its address to match the IMU address
uint8_t old_address = _dev->get_bus_address();
_dev->set_address(imu_address);
2019-09-24 04:23:07 -03:00
2018-02-15 00:00:23 -04:00
_dev->set_retries(4);
uint8_t whoami=0;
_dev->read_registers(MPUREG_WHOAMI, &whoami, 1);
DEV_PRINTF("IMU: whoami 0x%02x old_address=%02x\n", whoami, old_address);
2018-02-15 00:00:23 -04:00
_dev->write_register(MPUREG_FIFO_EN, 0x00);
_dev->write_register(MPUREG_PWR_MGMT_1, BIT_PWR_MGMT_1_CLK_XGYRO);
2019-09-24 04:23:07 -03:00
2018-02-15 00:00:23 -04:00
// wait for sensor to settle
hal.scheduler->delay(10);
_dev->write_register(MPUREG_INT_PIN_CFG, BIT_BYPASS_EN);
_dev->set_address(old_address);
_dev->get_semaphore()->give();
return true;
}
bool AP_Baro_LPS2XH::_init()
{
if (!_dev) {
return false;
}
_dev->get_semaphore()->take_blocking();
2019-09-24 04:23:07 -03:00
_dev->set_speed(AP_HAL::Device::SPEED_HIGH);
// top bit is for read on SPI
2023-03-22 05:50:50 -03:00
if (_dev->bus_type() == AP_HAL::Device::BUS_TYPE_SPI) {
_dev->set_read_flag(0x80);
}
2019-09-24 04:23:07 -03:00
if (!_check_whoami()) {
_dev->get_semaphore()->give();
return false;
}
//init control registers.
2019-09-24 04:23:07 -03:00
if (_lps2xh_type == BARO_LPS25H) {
_dev->write_register(LPS25H_CTRL_REG1_ADDR,0x00); // turn off for config
_dev->write_register(LPS25H_CTRL_REG2_ADDR,0x00); //FIFO Disabled
_dev->write_register(LPS25H_FIFO_CTRL, 0x01);
_dev->write_register(LPS25H_CTRL_REG1_ADDR,0xc0);
// request 25Hz update (maximum refresh Rate according to datasheet)
CallTime = 40 * AP_USEC_PER_MSEC;
}
2019-09-24 04:23:07 -03:00
if (_lps2xh_type == BARO_LPS22H) {
2019-05-04 14:39:39 -03:00
_dev->write_register(LPS22H_CTRL_REG1, 0x00); // turn off for config
_dev->write_register(LPS22H_CTRL_REG1, LPS22H_CTRL_REG1_ODR_75HZ|LPS22H_CTRL_REG1_BDU|LPS22H_CTRL_REG1_EN_LPFP|LPS22H_CTRL_REG1_LPFP_CFG);
if (_dev->bus_type() == AP_HAL::Device::BUS_TYPE_SPI) {
_dev->write_register(LPS22H_CTRL_REG2, 0x18); // disable i2c
} else {
_dev->write_register(LPS22H_CTRL_REG2, 0x10);
}
2019-09-24 04:23:07 -03:00
// request 75Hz update
CallTime = 1000000/75;
}
_instance = _frontend.register_sensor();
_dev->set_device_type(DEVTYPE_BARO_LPS2XH);
set_bus_id(_instance, _dev->get_bus_id());
_dev->get_semaphore()->give();
_dev->register_periodic_callback(CallTime, FUNCTOR_BIND_MEMBER(&AP_Baro_LPS2XH::_timer, void));
return true;
}
//check ID
bool AP_Baro_LPS2XH::_check_whoami(void)
{
uint8_t whoami;
2019-09-24 04:23:07 -03:00
if (!_dev->read_registers(REG_ID, &whoami, 1)) {
return false;
}
DEV_PRINTF("LPS2XH whoami 0x%02x\n", whoami);
switch(whoami){
2019-09-24 04:23:07 -03:00
case LPS22HB_WHOAMI:
_lps2xh_type = BARO_LPS22H;
return true;
case LPS25HB_WHOAMI:
2019-09-24 04:23:07 -03:00
_lps2xh_type = BARO_LPS25H;
return true;
}
2019-09-24 04:23:07 -03:00
return false;
}
// accumulate a new sensor reading
void AP_Baro_LPS2XH::_timer(void)
{
uint8_t status;
// use status to check if data is available
if (!_dev->read_registers(STATUS_ADDR, &status, 1)) {
return;
}
2019-09-24 04:23:07 -03:00
if (status & 0x02) {
_update_temperature();
}
2019-09-24 04:23:07 -03:00
if (status & 0x01) {
_update_pressure();
}
}
// transfer data to the frontend
void AP_Baro_LPS2XH::update(void)
{
if (_pressure_count == 0) {
return;
}
WITH_SEMAPHORE(_sem);
_copy_to_frontend(_instance, _pressure_sum/_pressure_count, _temperature);
_pressure_sum = 0;
_pressure_count = 0;
}
// calculate temperature
void AP_Baro_LPS2XH::_update_temperature(void)
{
uint8_t pu8[2];
if (!_dev->read_registers(TEMP_OUT_ADDR, pu8, 2)) {
return;
}
int16_t Temp_Reg_s16 = (uint16_t)(pu8[1]<<8) | pu8[0];
2019-09-24 04:23:07 -03:00
WITH_SEMAPHORE(_sem);
if (_lps2xh_type == BARO_LPS25H) {
_temperature = (Temp_Reg_s16 * (1.0/480)) + 42.5;
}
2019-09-24 04:23:07 -03:00
if (_lps2xh_type == BARO_LPS22H) {
_temperature = Temp_Reg_s16 * 0.01;
}
}
// calculate pressure
void AP_Baro_LPS2XH::_update_pressure(void)
{
uint8_t pressure[3];
if (!_dev->read_registers(PRESS_OUT_XL_ADDR, pressure, 3)) {
return;
}
2019-09-24 04:23:07 -03:00
int32_t Pressure_Reg_s32 = ((uint32_t)pressure[2]<<16)|((uint32_t)pressure[1]<<8)|(uint32_t)pressure[0];
int32_t Pressure_mb = Pressure_Reg_s32 * (100.0f / 4096); // scale for pa
WITH_SEMAPHORE(_sem);
_pressure_sum += Pressure_mb;
_pressure_count++;
}
#endif // AP_BARO_LPS2XH_ENABLED