ardupilot/ArduSub/Attitude.cpp

203 lines
7.4 KiB
C++
Raw Normal View History

2016-01-14 15:30:56 -04:00
#include "Sub.h"
// get_smoothing_gain - returns smoothing gain to be passed into attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw
// result is a number from 2 to 12 with 2 being very sluggish and 12 being very crisp
2016-01-14 15:30:56 -04:00
float Sub::get_smoothing_gain()
{
return (2.0f + (float)g.rc_feel_rp/10.0f);
}
// get_pilot_desired_angle - transform pilot's roll or pitch input into a desired lean angle
// returns desired angle in centi-degrees
2016-01-14 15:30:56 -04:00
void Sub::get_pilot_desired_lean_angles(float roll_in, float pitch_in, float &roll_out, float &pitch_out, float angle_max)
{
// sanity check angle max parameter
aparm.angle_max = constrain_int16(aparm.angle_max,1000,8000);
// limit max lean angle
angle_max = constrain_float(angle_max, 1000, aparm.angle_max);
// scale roll_in, pitch_in to ANGLE_MAX parameter range
float scaler = aparm.angle_max/(float)ROLL_PITCH_INPUT_MAX;
roll_in *= scaler;
pitch_in *= scaler;
// do circular limit
float total_in = norm(pitch_in, roll_in);
if (total_in > angle_max) {
float ratio = angle_max / total_in;
roll_in *= ratio;
pitch_in *= ratio;
}
// do lateral tilt to euler roll conversion
2016-02-27 15:35:34 -04:00
roll_in = (18000/M_PI) * atanf(cosf(pitch_in*(M_PI/18000))*tanf(roll_in*(M_PI/18000)));
// return
roll_out = roll_in;
pitch_out = pitch_in;
}
// get_pilot_desired_heading - transform pilot's yaw input into a
// desired yaw rate
// returns desired yaw rate in centi-degrees per second
2016-01-14 15:30:56 -04:00
float Sub::get_pilot_desired_yaw_rate(int16_t stick_angle)
{
// convert pilot input to the desired yaw rate
return stick_angle * g.acro_yaw_p;
}
// check for ekf yaw reset and adjust target heading
2016-01-14 15:30:56 -04:00
void Sub::check_ekf_yaw_reset()
{
float yaw_angle_change_rad = 0.0f;
uint32_t new_ekfYawReset_ms = ahrs.getLastYawResetAngle(yaw_angle_change_rad);
if (new_ekfYawReset_ms != ekfYawReset_ms) {
attitude_control.shift_ef_yaw_target(ToDeg(yaw_angle_change_rad) * 100.0f);
ekfYawReset_ms = new_ekfYawReset_ms;
}
}
/*************************************************************
* yaw controllers
*************************************************************/
// get_roi_yaw - returns heading towards location held in roi_WP
// should be called at 100hz
2016-01-14 15:30:56 -04:00
float Sub::get_roi_yaw()
{
static uint8_t roi_yaw_counter = 0; // used to reduce update rate to 100hz
roi_yaw_counter++;
if (roi_yaw_counter >= 4) {
roi_yaw_counter = 0;
yaw_look_at_WP_bearing = pv_get_bearing_cd(inertial_nav.get_position(), roi_WP);
}
return yaw_look_at_WP_bearing;
}
2016-01-14 15:30:56 -04:00
float Sub::get_look_ahead_yaw()
{
const Vector3f& vel = inertial_nav.get_velocity();
float speed = norm(vel.x,vel.y);
// Commanded Yaw to automatically look ahead.
if (position_ok() && (speed > YAW_LOOK_AHEAD_MIN_SPEED)) {
yaw_look_ahead_bearing = degrees(atan2f(vel.y,vel.x))*100.0f;
}
return yaw_look_ahead_bearing;
}
/*************************************************************
* throttle control
****************************************************************/
2016-04-05 00:17:39 -03:00
// get_pilot_desired_climb_rate - transform pilot's throttle input to climb rate in cm/s
// without any deadzone at the bottom
2016-01-14 15:30:56 -04:00
float Sub::get_pilot_desired_climb_rate(float throttle_control)
{
// throttle failsafe check
if (failsafe.pilot_input) {
return 0.0f;
}
float desired_rate = 0.0f;
float mid_stick = channel_throttle->get_control_mid();
float deadband_top = mid_stick + g.throttle_deadzone;
float deadband_bottom = mid_stick - g.throttle_deadzone;
// ensure a reasonable throttle value
2016-04-05 00:17:39 -03:00
throttle_control = constrain_float(throttle_control,0.0f,1000.0f);
// ensure a reasonable deadzone
g.throttle_deadzone = constrain_int16(g.throttle_deadzone, 0, 400);
// check throttle is above, below or in the deadband
if (throttle_control < deadband_bottom) {
// below the deadband
2016-04-05 00:17:39 -03:00
desired_rate = g.pilot_velocity_z_max * (throttle_control-deadband_bottom) / deadband_bottom;
} else if (throttle_control > deadband_top) {
// above the deadband
desired_rate = g.pilot_velocity_z_max * (throttle_control-deadband_top) / (1000.0f-deadband_top);
} else {
// must be in the deadband
desired_rate = 0.0f;
}
// desired climb rate for logging
desired_climb_rate = desired_rate;
return desired_rate;
}
2017-02-10 13:46:54 -04:00
// get_surface_tracking_climb_rate - hold vehicle at the desired distance above the ground
// returns climb rate (in cm/s) which should be passed to the position controller
2016-01-14 15:30:56 -04:00
float Sub::get_surface_tracking_climb_rate(int16_t target_rate, float current_alt_target, float dt)
{
#if RANGEFINDER_ENABLED == ENABLED
static uint32_t last_call_ms = 0;
float distance_error;
float velocity_correction;
float current_alt = inertial_nav.get_altitude();
uint32_t now = millis();
// reset target altitude if this controller has just been engaged
if (now - last_call_ms > RANGEFINDER_TIMEOUT_MS) {
target_rangefinder_alt = rangefinder_state.alt_cm + current_alt_target - current_alt;
}
last_call_ms = now;
// adjust rangefinder target alt if motors have not hit their limits
if ((target_rate<0 && !motors.limit.throttle_lower) || (target_rate>0 && !motors.limit.throttle_upper)) {
target_rangefinder_alt += target_rate * dt;
}
// do not let target altitude get too far from current altitude above ground
// Note: the 750cm limit is perhaps too wide but is consistent with the regular althold limits and helps ensure a smooth transition
target_rangefinder_alt = constrain_float(target_rangefinder_alt,rangefinder_state.alt_cm-pos_control.get_leash_down_z(),rangefinder_state.alt_cm+pos_control.get_leash_up_z());
// calc desired velocity correction from target rangefinder alt vs actual rangefinder alt (remove the error already passed to Altitude controller to avoid oscillations)
distance_error = (target_rangefinder_alt - rangefinder_state.alt_cm) - (current_alt_target - current_alt);
velocity_correction = distance_error * g.rangefinder_gain;
velocity_correction = constrain_float(velocity_correction, -THR_SURFACE_TRACKING_VELZ_MAX, THR_SURFACE_TRACKING_VELZ_MAX);
// return combined pilot climb rate + rate to correct rangefinder alt error
return (target_rate + velocity_correction);
#else
return (float)target_rate;
#endif
}
// updates position controller's maximum altitude using fence and EKF limits
2016-01-14 15:30:56 -04:00
void Sub::update_poscon_alt_max()
{
// minimum altitude, ie. maximum depth
// interpreted as no limit if left as zero
float min_alt_cm = 0.0;
// no limit if greater than 100, a limit is necessary,
// or the vehicle will try to fly out of the water
float max_alt_cm = g.surface_depth; // minimum depth
#if AC_FENCE == ENABLED
// set fence altitude limit in position controller
if ((fence.get_enabled_fences() & AC_FENCE_TYPE_ALT_MAX) != 0) {
min_alt_cm = fence.get_safe_alt_min()*100.0f;
max_alt_cm = fence.get_safe_alt_max()*100.0f;
}
#endif
// pass limit to pos controller
2016-02-28 21:14:54 -04:00
pos_control.set_alt_min(min_alt_cm);
pos_control.set_alt_max(max_alt_cm);
}
// rotate vector from vehicle's perspective to North-East frame
2016-01-14 15:30:56 -04:00
void Sub::rotate_body_frame_to_NE(float &x, float &y)
{
float ne_x = x*ahrs.cos_yaw() - y*ahrs.sin_yaw();
float ne_y = x*ahrs.sin_yaw() + y*ahrs.cos_yaw();
x = ne_x;
y = ne_y;
}