ardupilot/APMrover2/Attitude.pde

180 lines
5.6 KiB
Plaintext
Raw Normal View History

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
//****************************************************************
// Function that controls aileron/rudder, elevator, rudder (if 4 channel control) and throttle to produce desired attitude and airspeed.
//****************************************************************
static void learning()
{
// Calculate desired servo output for the turn // Wheels Direction
// ---------------------------------------------
g.channel_roll.servo_out = nav_roll;
g.channel_roll.servo_out = g.channel_roll.servo_out * g.turn_gain;
g.channel_rudder.servo_out = g.channel_roll.servo_out;
}
static void crash_checker()
{
if(ahrs.pitch_sensor < -4500){
crash_timer = 255;
}
if(crash_timer > 0)
crash_timer--;
}
static void calc_throttle()
{
int throttle_target = g.throttle_cruise + throttle_nudge + 50;
// Normal airspeed target
target_airspeed = g.airspeed_cruise;
groundspeed_error = target_airspeed - (float)ground_speed;
g.channel_throttle.servo_out = throttle_target + g.pidTeThrottle.get_pid(groundspeed_error, dTnav);
g.channel_throttle.servo_out = constrain(g.channel_throttle.servo_out, g.throttle_min.get(), g.throttle_max.get());
}
/*****************************************
* Calculate desired turn angles (in medium freq loop)
*****************************************/
static void calc_nav_roll()
{
// Adjust gain based on ground speed
nav_gain_scaler = (float)ground_speed / (g.airspeed_cruise * 100.0);
nav_gain_scaler = constrain(nav_gain_scaler, 0.2, 1.4);
// Calculate the required turn of the wheels rover
// ----------------------------------------
// negative error = left turn
// positive error = right turn
nav_roll = g.pidNavRoll.get_pid(bearing_error, dTnav, nav_gain_scaler); //returns desired bank angle in degrees*100
nav_roll = constrain(nav_roll, -g.roll_limit.get(), g.roll_limit.get());
}
/*****************************************
* Roll servo slew limit
*****************************************/
/*
float roll_slew_limit(float servo)
{
static float last;
float temp = constrain(servo, last-ROLL_SLEW_LIMIT * delta_ms_fast_loop/1000.f, last + ROLL_SLEW_LIMIT * delta_ms_fast_loop/1000.f);
last = servo;
return temp;
}*/
/*****************************************
* Throttle slew limit
*****************************************/
static void throttle_slew_limit()
{
static int last = 1000;
if(g.throttle_slewrate) { // if slew limit rate is set to zero then do not slew limit
float temp = g.throttle_slewrate * G_Dt * 10.f; // * 10 to scale % to pwm range of 1000 to 2000
g.channel_throttle.radio_out = constrain(g.channel_throttle.radio_out, last - (int)temp, last + (int)temp);
last = g.channel_throttle.radio_out;
}
}
// Zeros out navigation Integrators if we are changing mode, have passed a waypoint, etc.
// Keeps outdated data out of our calculations
static void reset_I(void)
{
g.pidNavRoll.reset_I();
g.pidTeThrottle.reset_I();
// g.pidAltitudeThrottle.reset_I();
}
/*****************************************
* Set the flight control servos based on the current calculated values
*****************************************/
static void set_servos(void)
{
int flapSpeedSource = 0;
// vectorize the rc channels
RC_Channel_aux* rc_array[NUM_CHANNELS];
rc_array[CH_1] = NULL;
rc_array[CH_2] = NULL;
rc_array[CH_3] = NULL;
rc_array[CH_4] = NULL;
rc_array[CH_5] = &g.rc_5;
rc_array[CH_6] = &g.rc_6;
rc_array[CH_7] = &g.rc_7;
rc_array[CH_8] = &g.rc_8;
if((control_mode == MANUAL) || (control_mode == LEARNING)){
// do a direct pass through of radio values
g.channel_roll.radio_out = g.channel_roll.radio_in;
g.channel_pitch.radio_out = g.channel_pitch.radio_in;
g.channel_throttle.radio_out = g.channel_throttle.radio_in;
g.channel_rudder.radio_out = g.channel_roll.radio_in;
} else {
g.channel_roll.calc_pwm();
g.channel_pitch.calc_pwm();
g.channel_rudder.calc_pwm();
g.channel_throttle.radio_out = g.channel_throttle.radio_in;
// convert 0 to 100% into PWM
g.channel_throttle.servo_out = constrain(g.channel_throttle.servo_out, g.throttle_min.get(), g.throttle_max.get());
// g.channel_throttle.calc_pwm();
/* TO DO - fix this for RC_Channel library
#if THROTTLE_REVERSE == 1
radio_out[CH_THROTTLE] = radio_max(CH_THROTTLE) + radio_min(CH_THROTTLE) - radio_out[CH_THROTTLE];
#endif
*/
}
if (control_mode >= FLY_BY_WIRE_B) {
g.channel_throttle.calc_pwm();
/* only do throttle slew limiting in modes where throttle
control is automatic */
throttle_slew_limit();
}
#if HIL_MODE == HIL_MODE_DISABLED || HIL_SERVOS
// send values to the PWM timers for output
// ----------------------------------------
APM_RC.OutputCh(CH_1, g.channel_roll.radio_out); // send to Servos
APM_RC.OutputCh(CH_2, g.channel_pitch.radio_out); // send to Servos
APM_RC.OutputCh(CH_3, g.channel_throttle.radio_out); // send to Servos
APM_RC.OutputCh(CH_4, g.channel_rudder.radio_out); // send to Servos
// Route configurable aux. functions to their respective servos
g.rc_5.output_ch(CH_5);
g.rc_6.output_ch(CH_6);
g.rc_7.output_ch(CH_7);
g.rc_8.output_ch(CH_8);
#endif
}
static void demo_servos(byte i) {
while(i > 0){
gcs_send_text_P(SEVERITY_LOW,PSTR("Demo Servos!"));
#if HIL_MODE == HIL_MODE_DISABLED || HIL_SERVOS
APM_RC.OutputCh(1, 1400);
mavlink_delay(400);
APM_RC.OutputCh(1, 1600);
mavlink_delay(200);
APM_RC.OutputCh(1, 1500);
#endif
mavlink_delay(400);
i--;
}
}