ardupilot/libraries/AP_Controller/AP_Controller.h

294 lines
8.1 KiB
C
Raw Normal View History

/*
* AP_Controller.h
* Copyright (C) James Goppert 2010 <james.goppert@gmail.com>
*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef AP_Controller_H
#define AP_Controller_H
#include <AP_Common.h>
#include <AP_Vector.h>
#include <AP_Var.h>
#include <APM_RC.h>
#include "AP_RcChannel.h"
const float one = 1.0;
const float zero = 0.0;
const float negativeOne = -1.0;
/// Controller class
class AP_Controller
{
public:
class Block
{
public:
Block() :
_input(), _output()
{
}
virtual void update(const float & dt) = 0;
virtual void connect( Block * block)
{
if (!block) return;
for (int i=0;i<block->getOutput().getSize();i++)
_input.push_back(block->getOutput()[i]);
}
const Vector < float * > & getOutput() const { return _output; }
const float & input(int i) { return (*_input[i]);}
float & output(int i) { return (*_output[i]);}
protected:
Vector< const float * > _input;
Vector< float * > _output;
};
void addBlock(Block * block)
{
if (!block)
{
Serial.println("Attempint to add a null block");
return;
}
if (_blocks.getSize() > 0)
{
if (_blocks[_blocks.getSize()-1] == NULL)
{
Serial.println("Attempted to connect to null block");
return;
}
else
{
block->connect(_blocks[_blocks.getSize()-1]);
}
}
_blocks.push_back(block);
}
virtual void update(const double dt)
{
for (int i=0;i<_blocks.getSize();i++)
{
if (!_blocks[i]) continue;
_blocks[i]->update(dt);
}
}
private:
Vector<Block * > _blocks;
};
/// Servo Block
class ToServo : public AP_Controller::Block
{
public:
ToServo(AP_RcChannel * ch) : _ch(ch)
{
}
virtual void update(const float & dt = 0)
{
//Serial.println("calling to servo update");
//Serial.println("input: "); Serial.println(input(0));
if (_input.getSize() > 0)
{
_ch->setNormalized(input(0));
}
}
private:
float _position;
AP_RcChannel * _ch;
};
/// SumGain
class SumGain : public AP_Controller::Block
{
public:
/// Constructor that allows 1-8 sum gain pairs, more
/// can be added if necessary
SumGain(
const float * var1 = NULL, const float * gain1 = NULL,
const float * var2 = NULL, const float * gain2 = NULL,
const float * var3 = NULL, const float * gain3 = NULL,
const float * var4 = NULL, const float * gain4 = NULL,
const float * var5 = NULL, const float * gain5 = NULL,
const float * var6 = NULL, const float * gain6 = NULL,
const float * var7 = NULL, const float * gain7 = NULL,
const float * var8 = NULL, const float * gain8 = NULL)
{
if ( (var1 != NULL) && (gain1 != NULL) ) add(var1,gain1);
if ( (var2 != NULL) && (gain2 != NULL) ) add(var2,gain2);
if ( (var3 != NULL) && (gain3 != NULL) ) add(var3,gain3);
if ( (var4 != NULL) && (gain4 != NULL) ) add(var4,gain4);
if ( (var5 != NULL) && (gain5 != NULL) ) add(var5,gain5);
if ( (var6 != NULL) && (gain6 != NULL) ) add(var6,gain6);
if ( (var7 != NULL) && (gain7 != NULL) ) add(var7,gain7);
if ( (var8 != NULL) && (gain8 != NULL) ) add(var8,gain8);
// create output
_output.push_back(new float(0.0));
}
void add(const float * var, const float * gain)
{
_input.push_back(var);
_gain.push_back(gain);
}
virtual void update(const float & dt = 0)
{
//Serial.println("calling sumgain update");
if (_output.getSize() < 1) return;
float sum =0;
for (int i=0;i<_input.getSize();i++)
{
//Serial.println("input: "); Serial.println(input(i));
//Serial.println("gain: ");Serial.println(gain(i));
sum += input(i) * gain(i);
}
output(0) = sum;
}
float gain(int i) { return *(_gain[i]); }
private:
Vector<const float *> _gain;
};
/// PID block
class Pid : public AP_Controller::Block
{
public:
Pid(AP_Var::Key key, const prog_char_t * name,
float kP = 0.0,
float kI = 0.0,
float kD = 0.0,
float iMax = 0.0,
uint8_t dFcut = 20.0
) :
_group(key,name),
_eP(0),
_eI(0),
_eD(0),
_kP(&_group,1,kP,PSTR("P")),
_kI(&_group,2,kI,PSTR("I")),
_kD(&_group,3,kD,PSTR("D")),
_iMax(&_group,4,iMax,PSTR("IMAX")),
_fCut(&_group,5,dFcut,PSTR("FCUT"))
{
// create output
_output.push_back(new float(0.0));
}
virtual void update(const float & dt)
{
//Serial.println("calling pid update");
//Serial.println("input: "); Serial.println(input(0));
if (_output.getSize() < 1 || (!_input[0]) || (!_output[0]) ) return;
// derivative with low pass
float RC = 1/(2*M_PI*_fCut); // low pass filter
_eD = _eD + ( ( _eP - input(0) )/dt - _eD ) * (dt / (dt + RC));
// proportional, note must come after derivative
// because derivatve uses _eP as previous value
_eP = input(0);
// integral
_eI += _eP*dt;
// wind up guard
if (_eI > _iMax) _eI = _iMax;
else if (_eI < -_iMax) _eI = -_iMax;
// pid sum
output(0) = _kP*_eP + _kI*_eI + _kD*_eD;
//Serial.println("output: "); Serial.println(output(0));
// debug output
/*
Serial.println("kP, kI, kD: ");
Serial.print(_kP,5); Serial.print(" ");
Serial.print(_kI,5); Serial.print(" ");
Serial.println(_kD,5);
Serial.print("eP, eI, eD: ");
Serial.print(_eP,5); Serial.print(" ");
Serial.print(_eI,5); Serial.print(" ");
Serial.println(_eD,5);
Serial.print("input: ");
Serial.println(input(0),5);
Serial.print("output: ");
Serial.println(output(0),5);
*/
}
private:
AP_Var_group _group; /// helps with parameter management
AP_Float _eP; /// input
AP_Float _eI; /// integral of input
AP_Float _eD; /// derivative of input
AP_Float _kP; /// proportional gain
AP_Float _kI; /// integral gain
AP_Float _kD; /// derivative gain
AP_Float _iMax; /// integrator saturation
AP_Uint8 _fCut; /// derivative low-pass cut freq (Hz)
};
/// Sink block
/// saves input port to variable
class Sink : public AP_Controller::Block
{
public:
Sink(float & var, uint8_t port=0) :
_var(var), _port(port)
{
}
virtual void update(const float & dt)
{
//Serial.println("calling sink update");
//Serial.println("input: "); Serial.println(input(0));
_var = input(_port);
}
private:
float & _var;
uint8_t _port;
};
/// Saturate block
/// Constrains output to a range
class Saturate : public AP_Controller::Block
{
public:
Saturate(float & min, float & max, uint8_t port=0) :
_min(min), _max(max), _port(port)
{
// create output
//Serial.println("calling satruate update");
_output.push_back(new float(0.0));
}
virtual void update(const float & dt)
{
float u = input(_port);
if (u>_max) u = _max;
if (u<_min) u = _min;
output(_port) = u;
}
private:
uint8_t _port;
float & _min;
float & _max;
};
#endif // AP_Controller_H
// vim:ts=4:sw=4:expandtab