mirror of https://github.com/ArduPilot/ardupilot
79 lines
3.1 KiB
C
79 lines
3.1 KiB
C
|
#pragma once
|
||
|
|
||
|
#include <AP_Math/AP_Math.h>
|
||
|
|
||
|
#define AP_OPTICALFLOW_CAL_MAX_SAMPLES 50 // number of samples required before calibration begins
|
||
|
|
||
|
class AP_OpticalFlow_Calibrator {
|
||
|
public:
|
||
|
AP_OpticalFlow_Calibrator() {};
|
||
|
|
||
|
// start or stop the calibration
|
||
|
void start();
|
||
|
void stop();
|
||
|
|
||
|
// update the state machine and calculate scaling
|
||
|
// returns true if new scaling values have been found
|
||
|
bool update();
|
||
|
|
||
|
// get final scaling values
|
||
|
// scaling values used during sample collection should be multiplied by these scalars
|
||
|
Vector2f get_scalars();
|
||
|
|
||
|
private:
|
||
|
|
||
|
// single sample for a single axis
|
||
|
struct sample_t {
|
||
|
float flow_rate;
|
||
|
float body_rate;
|
||
|
float los_pred;
|
||
|
};
|
||
|
|
||
|
// attempt to add a new sample to the buffer
|
||
|
void add_sample(uint32_t timestamp_ms, const Vector2f& flow_rate, const Vector2f& body_rate, const Vector2f& los_pred);
|
||
|
|
||
|
// returns true once the sample buffer is full
|
||
|
bool sample_buffers_full() const;
|
||
|
|
||
|
// run calibration algorithm for both axis
|
||
|
// returns true on success and updates _cal_data[0,1].best_scale and best_scale_fitness
|
||
|
bool run_calibration();
|
||
|
|
||
|
// Run fitting algorithm for all samples of the given axis
|
||
|
// returns a scalar and fitness (lower numbers mean a better result) in the arguments provided
|
||
|
bool calc_scalars(uint8_t axis, float& scalar, float& fitness);
|
||
|
|
||
|
// calculate a single sample's residual given a scalar parameter
|
||
|
float calc_sample_residual(const sample_t& sample, float scalar) const;
|
||
|
|
||
|
// calculate the scalar that minimises the residual for a single sample
|
||
|
// returns true on success and populates the best_scalar argument
|
||
|
bool calc_sample_best_scalar(const sample_t& sample, float& best_scalar) const;
|
||
|
|
||
|
// calculate mean squared residual for all samples of a single axis (0 or 1) given a scalar parameter
|
||
|
float calc_mean_squared_residuals(uint8_t axis, float scalar) const;
|
||
|
|
||
|
// log a sample
|
||
|
void log_sample(uint8_t axis, uint8_t sample_num, float flow_rate, float body_rate, float los_pred);
|
||
|
|
||
|
// calibration states
|
||
|
enum class CalState {
|
||
|
NOT_STARTED = 0,
|
||
|
RUNNING, // collecting samples
|
||
|
READY_TO_CALIBRATE, // ready to calibrate (may wait until vehicle is disarmed)
|
||
|
SUCCESS,
|
||
|
FAILED
|
||
|
} _cal_state;
|
||
|
|
||
|
// local variables
|
||
|
uint32_t _start_time_ms; // time the calibration was started
|
||
|
struct {
|
||
|
sample_t samples[AP_OPTICALFLOW_CAL_MAX_SAMPLES]; // buffer of sensor samples
|
||
|
uint8_t num_samples; // number of samples in samples buffer
|
||
|
float best_scalar; // best scaling value found so far
|
||
|
float best_scalar_fitness; // fitness (rms of error) of best scaling value
|
||
|
} _cal_data[2]; // x and y axis
|
||
|
uint32_t _last_sample_timestamp_ms; // system time of last sample's timestamp, used to ignore duplicates
|
||
|
uint32_t _last_report_ms; // system time of last status report
|
||
|
};
|