mirror of https://github.com/ArduPilot/ardupilot
180 lines
5.7 KiB
C++
180 lines
5.7 KiB
C++
|
/// @file AC_PID_Basic.cpp
|
||
|
/// @brief Generic PID algorithm
|
||
|
|
||
|
#include <AP_Math/AP_Math.h>
|
||
|
#include <AP_InternalError/AP_InternalError.h>
|
||
|
#include "AC_PID_Basic.h"
|
||
|
|
||
|
#define AC_PID_Basic_FILT_E_HZ_DEFAULT 20.0f // default input filter frequency
|
||
|
#define AC_PID_Basic_FILT_E_HZ_MIN 0.01f // minimum input filter frequency
|
||
|
#define AC_PID_Basic_FILT_D_HZ_DEFAULT 10.0f // default input filter frequency
|
||
|
#define AC_PID_Basic_FILT_D_HZ_MIN 0.005f // minimum input filter frequency
|
||
|
|
||
|
const AP_Param::GroupInfo AC_PID_Basic::var_info[] = {
|
||
|
// @Param: P
|
||
|
// @DisplayName: PID Proportional Gain
|
||
|
// @Description: P Gain which produces an output value that is proportional to the current error value
|
||
|
AP_GROUPINFO("P", 0, AC_PID_Basic, _kp, 0),
|
||
|
|
||
|
// @Param: I
|
||
|
// @DisplayName: PID Integral Gain
|
||
|
// @Description: I Gain which produces an output that is proportional to both the magnitude and the duration of the error
|
||
|
AP_GROUPINFO("I", 1, AC_PID_Basic, _ki, 0),
|
||
|
|
||
|
// @Param: IMAX
|
||
|
// @DisplayName: PID Integral Maximum
|
||
|
// @Description: The maximum/minimum value that the I term can output
|
||
|
AP_GROUPINFO("IMAX", 2, AC_PID_Basic, _kimax, 0),
|
||
|
|
||
|
// @Param: FLTE
|
||
|
// @DisplayName: PID Error filter frequency in Hz
|
||
|
// @Description: Error filter frequency in Hz
|
||
|
// @Units: Hz
|
||
|
AP_GROUPINFO("FLTE", 3, AC_PID_Basic, _filt_E_hz, AC_PID_Basic_FILT_E_HZ_DEFAULT),
|
||
|
|
||
|
// @Param: D
|
||
|
// @DisplayName: PID Derivative Gain
|
||
|
// @Description: D Gain which produces an output that is proportional to the rate of change of the error
|
||
|
AP_GROUPINFO("D", 4, AC_PID_Basic, _kd, 0),
|
||
|
|
||
|
// @Param: FLTD
|
||
|
// @DisplayName: D term filter frequency in Hz
|
||
|
// @Description: D term filter frequency in Hz
|
||
|
// @Units: Hz
|
||
|
AP_GROUPINFO("FLTD", 5, AC_PID_Basic, _filt_D_hz, AC_PID_Basic_FILT_D_HZ_DEFAULT),
|
||
|
|
||
|
// @Param: FF
|
||
|
// @DisplayName: PID Feed Forward Gain
|
||
|
// @Description: FF Gain which produces an output that is proportional to the magnitude of the target
|
||
|
AP_GROUPINFO("FF", 6, AC_PID_Basic, _kff, 0),
|
||
|
|
||
|
AP_GROUPEND
|
||
|
};
|
||
|
|
||
|
// Constructor
|
||
|
AC_PID_Basic::AC_PID_Basic(float initial_p, float initial_i, float initial_d, float initial_ff, float initial_imax, float initial_filt_E_hz, float initial_filt_D_hz, float dt) :
|
||
|
_dt(dt)
|
||
|
{
|
||
|
// load parameter values from eeprom
|
||
|
AP_Param::setup_object_defaults(this, var_info);
|
||
|
|
||
|
_kp = initial_p;
|
||
|
_ki = initial_i;
|
||
|
_kd = initial_d;
|
||
|
_kff = initial_ff;
|
||
|
_kimax = fabsf(initial_imax);
|
||
|
filt_E_hz(initial_filt_E_hz);
|
||
|
filt_D_hz(initial_filt_D_hz);
|
||
|
|
||
|
// reset input filter to first value received
|
||
|
_reset_filter = true;
|
||
|
}
|
||
|
|
||
|
float AC_PID_Basic::update_all(float target, float measurement, bool limit)
|
||
|
{
|
||
|
return update_all(target, measurement, (limit && is_negative(_integrator)), (limit && is_positive(_integrator)));
|
||
|
}
|
||
|
|
||
|
// update_all - set target and measured inputs to PID controller and calculate outputs
|
||
|
// target and error are filtered
|
||
|
// the derivative is then calculated and filtered
|
||
|
// the integral is then updated based on the setting of the limit flag
|
||
|
float AC_PID_Basic::update_all(float target, float measurement, bool limit_neg, bool limit_pos)
|
||
|
{
|
||
|
// don't process inf or NaN
|
||
|
if (!isfinite(target) || isnan(target) ||
|
||
|
!isfinite(measurement) || isnan(measurement)) {
|
||
|
INTERNAL_ERROR(AP_InternalError::error_t::invalid_arg_or_result);
|
||
|
return 0.0f;
|
||
|
}
|
||
|
|
||
|
_target = target;
|
||
|
|
||
|
// reset input filter to value received
|
||
|
if (_reset_filter) {
|
||
|
_reset_filter = false;
|
||
|
_error = _target - measurement;
|
||
|
_derivative = 0.0f;
|
||
|
} else {
|
||
|
float error_last = _error;
|
||
|
_error += get_filt_E_alpha() * ((_target - measurement) - _error);
|
||
|
|
||
|
// calculate and filter derivative
|
||
|
if (is_positive(_dt)) {
|
||
|
float derivative = (_error - error_last) / _dt;
|
||
|
_derivative += get_filt_D_alpha() * (derivative - _derivative);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// update I term
|
||
|
update_i(limit_neg, limit_pos);
|
||
|
|
||
|
const float P_out = _error * _kp;
|
||
|
const float D_out = _derivative * _kd;
|
||
|
|
||
|
_pid_info.target = _target;
|
||
|
_pid_info.actual = measurement;
|
||
|
_pid_info.error = _error;
|
||
|
_pid_info.P = _error * _kp;
|
||
|
_pid_info.I = _integrator;
|
||
|
_pid_info.D = _derivative * _kd;
|
||
|
_pid_info.FF = _target * _kff;
|
||
|
|
||
|
return P_out + _integrator + D_out + _target * _kff;
|
||
|
}
|
||
|
|
||
|
// update_i - update the integral
|
||
|
// if limit_neg is true, the integral can only increase
|
||
|
// if limit_pos is true, the integral can only decrease
|
||
|
void AC_PID_Basic::update_i(bool limit_neg, bool limit_pos)
|
||
|
{
|
||
|
if (!is_zero(_ki)) {
|
||
|
// Ensure that integrator can only be reduced if the output is saturated
|
||
|
if (!((limit_neg && is_negative(_error)) || (limit_pos && is_positive(_error)))) {
|
||
|
_integrator += ((float)_error * _ki) * _dt;
|
||
|
_integrator = constrain_float(_integrator, -_kimax, _kimax);
|
||
|
}
|
||
|
} else {
|
||
|
_integrator = 0.0f;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// save_gains - save gains to eeprom
|
||
|
void AC_PID_Basic::save_gains()
|
||
|
{
|
||
|
_kp.save();
|
||
|
_ki.save();
|
||
|
_kd.save();
|
||
|
_kff.save();
|
||
|
_kimax.save();
|
||
|
_filt_E_hz.save();
|
||
|
_filt_D_hz.save();
|
||
|
}
|
||
|
|
||
|
// get_filt_T_alpha - get the target filter alpha
|
||
|
float AC_PID_Basic::get_filt_E_alpha() const
|
||
|
{
|
||
|
return calc_lowpass_alpha_dt(_dt, _filt_E_hz);
|
||
|
}
|
||
|
|
||
|
// get_filt_D_alpha - get the derivative filter alpha
|
||
|
float AC_PID_Basic::get_filt_D_alpha() const
|
||
|
{
|
||
|
return calc_lowpass_alpha_dt(_dt, _filt_D_hz);
|
||
|
}
|
||
|
|
||
|
void AC_PID_Basic::set_integrator(float target, float measurement, float i)
|
||
|
{
|
||
|
set_integrator(target - measurement, i);
|
||
|
}
|
||
|
|
||
|
void AC_PID_Basic::set_integrator(float error, float i)
|
||
|
{
|
||
|
set_integrator(i - error * _kp);
|
||
|
}
|
||
|
|
||
|
void AC_PID_Basic::set_integrator(float i)
|
||
|
{
|
||
|
_integrator = constrain_float(i, -_kimax, _kimax);
|
||
|
}
|