ardupilot/libraries/AP_Motors/AP_MotorsHeli_Single.h

188 lines
9.0 KiB
C
Raw Normal View History

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/// @file AP_MotorsHeli_Single.h
/// @brief Motor control class for traditional heli
#ifndef __AP_MOTORS_HELI_SINGLE_H__
#define __AP_MOTORS_HELI_SINGLE_H__
#include <AP_Common/AP_Common.h>
#include <AP_Math/AP_Math.h> // ArduPilot Mega Vector/Matrix math Library
#include <RC_Channel/RC_Channel.h> // RC Channel Library
#include "AP_MotorsHeli.h"
#include "AP_MotorsHeli_RSC.h"
// rsc and aux function output channels
#define AP_MOTORS_HELI_SINGLE_RSC CH_8
#define AP_MOTORS_HELI_SINGLE_AUX CH_7
// servo position defaults
#define AP_MOTORS_HELI_SINGLE_SERVO1_POS -60
#define AP_MOTORS_HELI_SINGLE_SERVO2_POS 60
#define AP_MOTORS_HELI_SINGLE_SERVO3_POS 180
// swash type definitions
#define AP_MOTORS_HELI_SINGLE_SWASH_CCPM 0
#define AP_MOTORS_HELI_SINGLE_SWASH_H1 1
// tail types
#define AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO 0
#define AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO_EXTGYRO 1
#define AP_MOTORS_HELI_SINGLE_TAILTYPE_DIRECTDRIVE_VARPITCH 2
#define AP_MOTORS_HELI_SINGLE_TAILTYPE_DIRECTDRIVE_FIXEDPITCH 3
// default direct-drive variable pitch tail defaults
#define AP_MOTORS_HELI_SINGLE_DDVPT_SPEED_DEFAULT 500
#define AP_MOTORS_HELI_SINGLE_DDVPT_RAMP_TIME 2
#define AP_MOTORS_HELI_SINGLE_DDVPT_RUNUP_TIME 3
// default external gyro gain
#define AP_MOTORS_HELI_SINGLE_EXT_GYRO_GAIN 350
// COLYAW parameter min and max values
#define AP_MOTORS_HELI_SINGLE_COLYAW_RANGE 10.0f
#define AP_MOTORS_HELI_SINGLE_TAIL_RAMP_INCREMENT 5 // 5 is 2 seconds for direct drive tail rotor to reach to full speed (5 = (2sec*100hz)/1000)
/// @class AP_MotorsHeli_Single
class AP_MotorsHeli_Single : public AP_MotorsHeli {
public:
// constructor
AP_MotorsHeli_Single(RC_Channel& servo_aux,
RC_Channel& servo_rsc,
RC_Channel& servo_1,
RC_Channel& servo_2,
RC_Channel& servo_3,
RC_Channel& servo_4,
uint16_t loop_rate,
uint16_t speed_hz = AP_MOTORS_HELI_SPEED_DEFAULT) :
AP_MotorsHeli(loop_rate, speed_hz),
_servo_aux(servo_aux),
_swash_servo_1(servo_1),
_swash_servo_2(servo_2),
_swash_servo_3(servo_3),
_yaw_servo(servo_4),
_main_rotor(servo_rsc, AP_MOTORS_HELI_SINGLE_RSC, loop_rate),
_tail_rotor(servo_aux, AP_MOTORS_HELI_SINGLE_AUX, loop_rate)
{
AP_Param::setup_object_defaults(this, var_info);
};
// set update rate to motors - a value in hertz
// you must have setup_motors before calling this
void set_update_rate(uint16_t speed_hz);
// enable - starts allowing signals to be sent to motors and servos
void enable();
// output_test - spin a motor at the pwm value specified
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
void output_test(uint8_t motor_seq, int16_t pwm);
// set_desired_rotor_speed - sets target rotor speed as a number from 0 ~ 1000
void set_desired_rotor_speed(int16_t desired_speed);
// get_main_rotor_speed - gets estimated or measured main rotor speed
int16_t get_main_rotor_speed() const { return _main_rotor.get_rotor_speed(); }
// get_desired_rotor_speed - gets target rotor speed as a number from 0 ~ 1000
int16_t get_desired_rotor_speed() const { return _main_rotor.get_desired_speed(); }
// rotor_speed_above_critical - return true if rotor speed is above that critical for flight
bool rotor_speed_above_critical() const { return _main_rotor.get_rotor_speed() > _main_rotor.get_critical_speed(); }
// calculate_scalars - recalculates various scalars used
void calculate_scalars();
// calculate_armed_scalars - recalculates scalars that can change while armed
void calculate_armed_scalars();
// get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used)
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
uint16_t get_motor_mask();
// _tail_type - returns the tail type (servo, servo with ext gyro, direct drive var pitch, direct drive fixed pitch)
int16_t tail_type() const { return _tail_type; }
// ext_gyro_gain - gets and sets external gyro gain as a pwm (1000~2000)
2015-08-09 08:02:54 -03:00
int16_t ext_gyro_gain() const { return _ext_gyro_gain_std; }
void ext_gyro_gain(int16_t pwm) { _ext_gyro_gain_std = pwm; }
// has_flybar - returns true if we have a mechical flybar
bool has_flybar() const { return _flybar_mode; }
// get_phase_angle - returns phase angle
int16_t get_phase_angle() const { return _phase_angle; }
// supports_yaw_passthrought - returns true if we support yaw passthrough
bool supports_yaw_passthrough() const { return _tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO_EXTGYRO; }
// set_delta_phase_angle for setting variable phase angle compensation and force
// recalculation of collective factors
void set_delta_phase_angle(int16_t angle);
2015-08-09 08:02:54 -03:00
void set_acro_tail(bool set) { _acro_tail = set; }
// servo_test - move servos through full range of movement
void servo_test();
// var_info
static const struct AP_Param::GroupInfo var_info[];
protected:
// init_outputs - initialise Servo/PWM ranges and endpoints
void init_outputs();
// update_motor_controls - sends commands to motor controllers
void update_motor_control(RotorControlState state);
// calculate_roll_pitch_collective_factors - calculate factors based on swash type and servo position
void calculate_roll_pitch_collective_factors();
// heli_move_actuators - moves swash plate and tail rotor
void move_actuators(int16_t roll_out, int16_t pitch_out, int16_t coll_in, int16_t yaw_out);
// move_yaw - moves the yaw servo
void move_yaw(int16_t yaw_out);
// write_aux - outputs pwm onto output aux channel (ch7). servo_out parameter is of the range 0 ~ 1000
void write_aux(int16_t servo_out);
// external objects we depend upon
RC_Channel& _servo_aux; // output to ext gyro gain and tail direct drive esc (ch7)
RC_Channel& _swash_servo_1; // swash plate servo #1
RC_Channel& _swash_servo_2; // swash plate servo #2
RC_Channel& _swash_servo_3; // swash plate servo #3
RC_Channel& _yaw_servo; // tail servo
AP_MotorsHeli_RSC _main_rotor; // main rotor
AP_MotorsHeli_RSC _tail_rotor; // tail rotor
// internal variables
float _oscillate_angle = 0.0f; // cyclic oscillation angle, used by servo_test function
float _servo_test_cycle_time = 0.0f; // cycle time tracker, used by servo_test function
float _collective_test = 0.0f; // over-ride for collective output, used by servo_test function
float _roll_test = 0.0f; // over-ride for roll output, used by servo_test function
float _pitch_test = 0.0f; // over-ride for pitch output, used by servo_test function
float _yaw_test = 0.0f; // over-ride for yaw output, used by servo_test function
// parameters
AP_Int16 _servo1_pos; // Angular location of swash servo #1
AP_Int16 _servo2_pos; // Angular location of swash servo #2
AP_Int16 _servo3_pos; // Angular location of swash servo #3
AP_Int16 _tail_type; // Tail type used: Servo, Servo with external gyro, direct drive variable pitch or direct drive fixed pitch
AP_Int8 _swash_type; // Swash Type Setting - either 3-servo CCPM or H1 Mechanical Mixing
2015-08-09 08:02:54 -03:00
AP_Int16 _ext_gyro_gain_std; // PWM sent to external gyro on ch7 when tail type is Servo w/ ExtGyro
AP_Int16 _ext_gyro_gain_acro; // PWM sent to external gyro on ch7 when tail type is Servo w/ ExtGyro in ACRO
AP_Int16 _phase_angle; // Phase angle correction for rotor head. If pitching the swash forward induces a roll, this can be correct the problem
AP_Float _collective_yaw_effect; // Feed-forward compensation to automatically add rudder input when collective pitch is increased. Can be positive or negative depending on mechanics.
AP_Int8 _flybar_mode; // Flybar present or not. Affects attitude controller used during ACRO flight mode
AP_Int16 _direct_drive_tailspeed; // Direct Drive VarPitch Tail ESC speed (0 ~ 1000)
2015-08-09 08:02:54 -03:00
bool _acro_tail = false;
};
#endif // __AP_MOTORS_HELI_SINGLE_H__