ardupilot/libraries/AP_Math/SCurve.h

213 lines
10 KiB
C
Raw Normal View History

#pragma once
#include <AP_Common/AP_Common.h>
/*
* SCurves calculate paths between waypoints (including the corners) using specified speed, acceleration and jerk limits
*
* How to use:
* 1. create three SCurve objects called something like "prev_leg", "this_leg" and "next_leg"
* 2. call this_leg.calculate_track() to calculate the path from the origin to the destination for the given speed, accel and jerk limits
* 3. if the vehicle will fly past the destination to another "next destination":
* a) call next_leg.calculate_track() with the appropriate arguments
* b) set a "fast_waypoint" boolean to true. this will be passed into "advance_target_along_track()" in the next step
* if there is no "next destination"
* a) call next_leg.init()
* b) set the "fast_waypoint" boolean to false
* 4. call this_leg.advance_target_along_track() with a small "dt" value and retrieve the resulting target position, velocity and acceleration
* Note: the target_pos should be set to the segments's earth frame origin before this function is called
* 5. pass the target position, velocity and acceleration into the position controller
* 6. repeat steps 4 and 5 until finished() returns true
* 7. promote the legs:
* a) set prev_leg = this_leg
* b) set this_leg = next_leg
* c) jump back to step 3
*
* Other features:
* 1. set_speed_max() allows changing the max speeds mid path. The path will be recalculated
* 2. set_origin_speed_max() and set_destination_speed_max() allows setting the speed along the path at the beginning and end of the leg
* this is used to smoothly integrate with spline segments
*
* This library works with any units (meters, cm, etc) as long as they are used consistently.
* e.g. if origin and destination are meters, speeds should be in m/s, accel in m/s/s, etc.
*
* Terminology:
* position: a point in space
* velocity: rate of change of position. aka speed
* acceleration: rate of change of speed
* jerk: rate of change of acceleration
* jerk time: the time (in seconds) for jerk to increase from zero to its maximum value
* jounce: rate of change of jerk
* track: 3D path that the vehicle will follow
* path: position, velocity, accel and jerk kinematic profile that this library generates
*/
class SCurve {
public:
// constructor
SCurve();
// initialise and clear the path
void init();
2021-07-22 00:40:11 -03:00
// calculate the segment times for the trigonometric S-Curve path defined by:
// tj - duration of the raised cosine jerk profile (aka jerk time)
// Jm - maximum value of the raised cosine jerk profile (aka jerk max)
// V0 - initial velocity magnitude
// Am - maximum constant acceleration
// Vm - maximum constant velocity
// L - Length of the path
// this is an internal function, static for test suite
static void calculate_path(float tj, float Jm, float V0, float Am, float Vm, float L, float &Jm_out, float &t2_out, float &t4_out, float &t6_out);
// generate a trigonometric track in 3D space that moves over a straight line
// between two points defined by the origin and destination
void calculate_track(const Vector3f &origin, const Vector3f &destination,
float speed_xy, float speed_up, float speed_down,
float accel_xy, float accel_z,
float jerk_time_sec, float jerk_maximum);
// set maximum velocity and re-calculate the path using these limits
void set_speed_max(float speed_xy, float speed_up, float speed_down);
// set the maximum vehicle speed at the origin
// returns the expected speed at the origin which will always be equal or lower than speed
float set_origin_speed_max(float speed);
// set the maximum vehicle speed at the destination
void set_destination_speed_max(float speed);
// move target location along path from origin to destination
// prev_leg and next_leg are the paths before and after this path
// wp_radius is max distance from the waypoint at the apex of the turn
// fast_waypoint should be true if vehicle will not stop at end of this leg
// dt is the time increment the vehicle will move along the path
// target_pos should be set to this segment's origin and it will be updated to the current position target
// target_vel and target_accel are updated with new targets
// returns true if vehicle has passed the apex of the corner
bool advance_target_along_track(SCurve &prev_leg, SCurve &next_leg, float wp_radius, bool fast_waypoint, float dt, Vector3f &target_pos, Vector3f &target_vel, Vector3f &target_accel) WARN_IF_UNUSED;
// time has reached the end of the sequence
bool finished() const WARN_IF_UNUSED;
private:
// increment time and return the position, velocity and acceleration vectors relative to the origin
void move_from_pos_vel_accel(float dt, Vector3f &pos, Vector3f &vel, Vector3f &accel);
// increment time and return the position, velocity and acceleration vectors relative to the destination
void move_to_pos_vel_accel(float dt, Vector3f &pos, Vector3f &vel, Vector3f &accel);
// return the position, velocity and acceleration vectors relative to the origin at a specified time along the path
void move_from_time_pos_vel_accel(float t, Vector3f &pos, Vector3f &vel, Vector3f &accel);
// get desired maximum speed along track
float get_speed_along_track() const WARN_IF_UNUSED { return vel_max; }
// get desired maximum acceleration along track
float get_accel_along_track() const WARN_IF_UNUSED { return accel_max; }
// return the change in position from origin to destination
const Vector3f& get_track() const WARN_IF_UNUSED { return track; };
// return the current time elapsed
float get_time_elapsed() const WARN_IF_UNUSED { return time; }
// time at the end of the sequence
float time_end() const WARN_IF_UNUSED;
// time left before sequence will complete
float get_time_remaining() const WARN_IF_UNUSED;
// time when acceleration section of the sequence will complete
float get_accel_finished_time() const WARN_IF_UNUSED;
// return true if the sequence is braking to a stop
bool braking() const WARN_IF_UNUSED;
// increment the internal time
void advance_time(float dt);
// calculate the jerk, acceleration, velocity and position at time t
void get_jerk_accel_vel_pos_at_time(float time_now, float &Jt_out, float &At_out, float &Vt_out, float &Pt_out) const;
// calculate the jerk, acceleration, velocity and position at time t when running the constant jerk time segment
void calc_javp_for_segment_const_jerk(float time_now, float J0, float A0, float V0, float P0, float &Jt, float &At, float &Vt, float &Pt) const;
// Calculate the jerk, acceleration, velocity and position at time t when running the increasing jerk magnitude time segment based on a raised cosine profile
void calc_javp_for_segment_incr_jerk(float time_now, float tj, float Jm, float A0, float V0, float P0, float &Jt, float &At, float &Vt, float &Pt) const;
// Calculate the jerk, acceleration, velocity and position at time t when running the decreasing jerk magnitude time segment based on a raised cosine profile
void calc_javp_for_segment_decr_jerk(float time_now, float tj, float Jm, float A0, float V0, float P0, float &Jt, float &At, float &Vt, float &Pt) const;
// generate time segments for straight segment
void add_segments(float L);
// generate three time segments forming the jerk profile
void add_segments_jerk(uint8_t &seg_pnt, float tj, float Jm, float Tcj);
// generate constant jerk time segment
void add_segment_const_jerk(uint8_t &seg_pnt, float tin, float J0);
// generate increasing jerk magnitude time segment based on a raised cosine profile
void add_segment_incr_jerk(uint8_t &seg_pnt, float tj, float Jm);
// generate decreasing jerk magnitude time segment based on a raised cosine profile
void add_segment_decr_jerk(uint8_t &seg_pnt, float tj, float Jm);
// set speed and acceleration limits for the path
// origin and destination are offsets from EKF origin
// speed and acceleration parameters are given in horizontal, up and down.
void set_kinematic_limits(const Vector3f &origin, const Vector3f &destination,
float speed_xy, float speed_up, float speed_down,
float accel_xy, float accel_z);
// return true if the curve is valid. Used to identify and protect against code errors
bool valid() const WARN_IF_UNUSED;
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
// debugging messages
void debug() const;
#endif
// segment types
enum class SegmentType {
CONSTANT_JERK,
POSITIVE_JERK,
NEGATIVE_JERK
};
// add single segment
void add_segment(uint8_t &seg_pnt, float end_time, SegmentType seg_type, float jerk_ref, float end_accel, float end_vel, float end_pos);
// members
float jerk_time; // duration of jerk raised cosine time segment
float jerk_max; // maximum jerk magnitude
float accel_max; // maximum acceleration magnitude
float vel_max; // maximum velocity magnitude
float time; // time that defines position on the path
float position_sq; // position (squared) on the path at the last time step (used to detect finish)
// segment 0 is the initial segment and holds the vehicle's initial position and velocity
// segments 1 to 7 are the acceleration segments
// segments 8 to 14 are the speed change segments
// segment 15 is the constant velocity segment
// segment 16 to 22 is the deceleration segment
const static uint8_t segments_max = 23; // maximum number of time segments
uint8_t num_segs; // number of time segments being used
struct {
float jerk_ref; // jerk reference value for time segment (the jerk at the beginning, middle or end depending upon the segment type)
SegmentType seg_type; // segment type (jerk is constant, increasing or decreasing)
float end_time; // final time value for segment
float end_accel; // final acceleration value for segment
float end_vel; // final velocity value for segment
float end_pos; // final position value for segment
} segment[segments_max];
Vector3f track; // total change in position from origin to destination
Vector3f delta_unit; // reference direction vector for path
};