ardupilot/libraries/AP_Motors/AP_MotorsHeli_Single.cpp

579 lines
23 KiB
C++
Raw Normal View History

/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdlib.h>
#include <AP_HAL/AP_HAL.h>
2017-01-03 05:56:57 -04:00
#include <SRV_Channel/SRV_Channel.h>
#include "AP_MotorsHeli_Single.h"
#include <GCS_MAVLink/GCS.h>
extern const AP_HAL::HAL& hal;
const AP_Param::GroupInfo AP_MotorsHeli_Single::var_info[] = {
AP_NESTEDGROUPINFO(AP_MotorsHeli, 0),
// @Param: SV1_POS
// @DisplayName: Servo 1 Position
// @Description: Angular location of swash servo #1
// @Range: -180 180
// @Units: deg
// @User: Standard
// @Increment: 1
AP_GROUPINFO("SV1_POS", 1, AP_MotorsHeli_Single, _servo1_pos, AP_MOTORS_HELI_SINGLE_SERVO1_POS),
// @Param: SV2_POS
// @DisplayName: Servo 2 Position
// @Description: Angular location of swash servo #2
// @Range: -180 180
// @Units: deg
// @User: Standard
// @Increment: 1
AP_GROUPINFO("SV2_POS", 2, AP_MotorsHeli_Single, _servo2_pos, AP_MOTORS_HELI_SINGLE_SERVO2_POS),
// @Param: SV3_POS
// @DisplayName: Servo 3 Position
// @Description: Angular location of swash servo #3
// @Range: -180 180
// @Units: deg
// @User: Standard
// @Increment: 1
AP_GROUPINFO("SV3_POS", 3, AP_MotorsHeli_Single, _servo3_pos, AP_MOTORS_HELI_SINGLE_SERVO3_POS),
// @Param: TAIL_TYPE
// @DisplayName: Tail Type
// @Description: Tail type selection. Simpler yaw controller used if external gyro is selected
// @Values: 0:Servo only,1:Servo with ExtGyro,2:DirectDrive VarPitch,3:DirectDrive FixedPitch
// @User: Standard
AP_GROUPINFO("TAIL_TYPE", 4, AP_MotorsHeli_Single, _tail_type, AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO),
// @Param: SWASH_TYPE
// @DisplayName: Swash Type
// @Description: Swash Type Setting - either 3-servo CCPM or H1 Mechanical Mixing
// @Values: 0:3-Servo CCPM, 1:H1 Mechanical Mixing
// @User: Standard
AP_GROUPINFO("SWASH_TYPE", 5, AP_MotorsHeli_Single, _swash_type, AP_MOTORS_HELI_SINGLE_SWASH_CCPM),
// @Param: GYR_GAIN
// @DisplayName: External Gyro Gain
// @Description: PWM in microseconds sent to external gyro on ch7 when tail type is Servo w/ ExtGyro
// @Range: 0 1000
// @Units: PWM
// @Increment: 1
// @User: Standard
2015-08-09 08:02:54 -03:00
AP_GROUPINFO("GYR_GAIN", 6, AP_MotorsHeli_Single, _ext_gyro_gain_std, AP_MOTORS_HELI_SINGLE_EXT_GYRO_GAIN),
// @Param: PHANG
// @DisplayName: Swashplate Phase Angle Compensation
// @Description: Phase angle correction for rotor head. If pitching the swash forward induces a roll, this can be correct the problem
// @Range: -90 90
// @Units: deg
// @User: Advanced
// @Increment: 1
AP_GROUPINFO("PHANG", 7, AP_MotorsHeli_Single, _phase_angle, 0),
// @Param: COLYAW
// @DisplayName: Collective-Yaw Mixing
// @Description: Feed-forward compensation to automatically add rudder input when collective pitch is increased. Can be positive or negative depending on mechanics.
// @Range: -10 10
// @Increment: 0.1
// @User: Advanced
AP_GROUPINFO("COLYAW", 8, AP_MotorsHeli_Single, _collective_yaw_effect, 0),
// @Param: FLYBAR_MODE
// @DisplayName: Flybar Mode Selector
// @Description: Flybar present or not. Affects attitude controller used during ACRO flight mode
// @Values: 0:NoFlybar,1:Flybar
// @User: Standard
AP_GROUPINFO("FLYBAR_MODE", 9, AP_MotorsHeli_Single, _flybar_mode, AP_MOTORS_HELI_NOFLYBAR),
// @Param: TAIL_SPEED
// @DisplayName: Direct Drive VarPitch Tail ESC speed
// @Description: Direct Drive VarPitch Tail ESC speed in PWM microseconds. Only used when TailType is DirectDrive VarPitch
// @Range: 0 1000
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO("TAIL_SPEED", 10, AP_MotorsHeli_Single, _direct_drive_tailspeed, AP_MOTORS_HELI_SINGLE_DDVPT_SPEED_DEFAULT),
2015-08-09 08:02:54 -03:00
// @Param: GYR_GAIN_ACRO
// @DisplayName: External Gyro Gain for ACRO
// @Description: PWM in microseconds sent to external gyro on ch7 when tail type is Servo w/ ExtGyro. A value of zero means to use H_GYR_GAIN
2015-08-09 08:02:54 -03:00
// @Range: 0 1000
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO("GYR_GAIN_ACRO", 11, AP_MotorsHeli_Single, _ext_gyro_gain_acro, 0),
// @Param: RSC_PWM_MIN
// @DisplayName: RSC PWM output miniumum
// @Description: This sets the PWM output on RSC channel for maximum rotor speed
// @Range: 0 2000
// @User: Standard
AP_GROUPINFO("RSC_PWM_MIN", 16, AP_MotorsHeli_Single, _main_rotor._pwm_min, 1000),
// @Param: RSC_PWM_MAX
// @DisplayName: RSC PWM output maxiumum
// @Description: This sets the PWM output on RSC channel for miniumum rotor speed
// @Range: 0 2000
// @User: Standard
AP_GROUPINFO("RSC_PWM_MAX", 17, AP_MotorsHeli_Single, _main_rotor._pwm_max, 2000),
// @Param: RSC_PWM_REV
// @DisplayName: RSC PWM reversal
// @Description: This controls reversal of the RSC channel output
// @Values: -1:Reversed,1:Normal
// @User: Standard
AP_GROUPINFO("RSC_PWM_REV", 18, AP_MotorsHeli_Single, _main_rotor._pwm_rev, 1),
// parameters up to and including 29 are reserved for tradheli
AP_GROUPEND
};
// set update rate to motors - a value in hertz
void AP_MotorsHeli_Single::set_update_rate( uint16_t speed_hz )
{
// record requested speed
_speed_hz = speed_hz;
// setup fast channels
uint32_t mask =
1U << AP_MOTORS_MOT_1 |
1U << AP_MOTORS_MOT_2 |
1U << AP_MOTORS_MOT_3 |
1U << AP_MOTORS_MOT_4;
rc_set_freq(mask, _speed_hz);
}
// init_outputs - initialise Servo/PWM ranges and endpoints
2017-01-03 05:56:57 -04:00
bool AP_MotorsHeli_Single::init_outputs()
{
2017-01-03 05:56:57 -04:00
if (!_flags.initialised_ok) {
_swash_servo_1 = SRV_Channels::get_channel_for(SRV_Channel::k_motor1, CH_1);
_swash_servo_2 = SRV_Channels::get_channel_for(SRV_Channel::k_motor2, CH_2);
_swash_servo_3 = SRV_Channels::get_channel_for(SRV_Channel::k_motor3, CH_3);
_yaw_servo = SRV_Channels::get_channel_for(SRV_Channel::k_motor4, CH_4);
_servo_aux = SRV_Channels::get_channel_for(SRV_Channel::k_motor7, CH_7);
if (!_swash_servo_1 || !_swash_servo_2 || !_swash_servo_3 || !_yaw_servo || !_servo_aux) {
return false;
}
}
// reset swash servo range and endpoints
reset_swash_servo (_swash_servo_1);
reset_swash_servo (_swash_servo_2);
reset_swash_servo (_swash_servo_3);
2017-01-03 05:56:57 -04:00
_yaw_servo->set_angle(4500);
// set main rotor servo range
// tail rotor servo use range as set in vehicle code for rc7
_main_rotor.init_servo();
2017-01-03 05:56:57 -04:00
return true;
}
// output_test - spin a motor at the pwm value specified
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
void AP_MotorsHeli_Single::output_test(uint8_t motor_seq, int16_t pwm)
{
// exit immediately if not armed
if (!armed()) {
return;
}
// output to motors and servos
switch (motor_seq) {
case 1:
// swash servo 1
rc_write(AP_MOTORS_MOT_1, pwm);
break;
case 2:
// swash servo 2
rc_write(AP_MOTORS_MOT_2, pwm);
break;
case 3:
// swash servo 3
rc_write(AP_MOTORS_MOT_3, pwm);
break;
case 4:
// external gyro & tail servo
if (_tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO_EXTGYRO) {
2015-08-09 08:02:54 -03:00
if (_acro_tail && _ext_gyro_gain_acro > 0) {
write_aux(_ext_gyro_gain_acro/1000.0f);
2015-08-09 08:02:54 -03:00
} else {
write_aux(_ext_gyro_gain_std/1000.0f);
2015-08-09 08:02:54 -03:00
}
}
rc_write(AP_MOTORS_MOT_4, pwm);
break;
case 5:
// main rotor
rc_write(AP_MOTORS_HELI_SINGLE_RSC, pwm);
break;
default:
// do nothing
break;
}
}
// set_desired_rotor_speed
void AP_MotorsHeli_Single::set_desired_rotor_speed(float desired_speed)
{
_main_rotor.set_desired_speed(desired_speed);
// always send desired speed to tail rotor control, will do nothing if not DDVPT not enabled
_tail_rotor.set_desired_speed(_direct_drive_tailspeed/1000.0f);
}
// calculate_scalars - recalculates various scalers used.
void AP_MotorsHeli_Single::calculate_armed_scalars()
{
_main_rotor.set_ramp_time(_rsc_ramp_time);
_main_rotor.set_runup_time(_rsc_runup_time);
_main_rotor.set_critical_speed(_rsc_critical/1000.0f);
_main_rotor.set_idle_output(_rsc_idle_output/1000.0f);
_main_rotor.set_power_output_range(_rsc_power_low/1000.0f, _rsc_power_high/1000.0f, _rsc_power_negc/1000.0f, (uint16_t)_rsc_slewrate.get());
}
// calculate_scalars - recalculates various scalers used.
void AP_MotorsHeli_Single::calculate_scalars()
{
// range check collective min, max and mid
if( _collective_min >= _collective_max ) {
_collective_min = AP_MOTORS_HELI_COLLECTIVE_MIN;
_collective_max = AP_MOTORS_HELI_COLLECTIVE_MAX;
}
_collective_mid = constrain_int16(_collective_mid, _collective_min, _collective_max);
// calculate collective mid point as a number from 0 to 1
_collective_mid_pct = ((float)(_collective_mid-_collective_min))/((float)(_collective_max-_collective_min));
// calculate factors based on swash type and servo position
calculate_roll_pitch_collective_factors();
// send setpoints to main rotor controller and trigger recalculation of scalars
_main_rotor.set_control_mode(static_cast<RotorControlMode>(_rsc_mode.get()));
calculate_armed_scalars();
// send setpoints to tail rotor controller and trigger recalculation of scalars
if (_tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_DIRECTDRIVE_VARPITCH) {
_tail_rotor.set_control_mode(ROTOR_CONTROL_MODE_SPEED_SETPOINT);
_tail_rotor.set_ramp_time(AP_MOTORS_HELI_SINGLE_DDVPT_RAMP_TIME);
_tail_rotor.set_runup_time(AP_MOTORS_HELI_SINGLE_DDVPT_RUNUP_TIME);
_tail_rotor.set_critical_speed(_rsc_critical/1000.0f);
_tail_rotor.set_idle_output(_rsc_idle_output/1000.0f);
} else {
_tail_rotor.set_control_mode(ROTOR_CONTROL_MODE_DISABLED);
_tail_rotor.set_ramp_time(0);
_tail_rotor.set_runup_time(0);
_tail_rotor.set_critical_speed(0);
_tail_rotor.set_idle_output(0);
}
}
// calculate_roll_pitch_collective_factors - calculate factors based on swash type and servo position
void AP_MotorsHeli_Single::calculate_roll_pitch_collective_factors()
{
if (_swash_type == AP_MOTORS_HELI_SINGLE_SWASH_CCPM) { //CCPM Swashplate, perform control mixing
// roll factors
_rollFactor[CH_1] = cosf(radians(_servo1_pos + 90 - _phase_angle));
_rollFactor[CH_2] = cosf(radians(_servo2_pos + 90 - _phase_angle));
_rollFactor[CH_3] = cosf(radians(_servo3_pos + 90 - _phase_angle));
// pitch factors
_pitchFactor[CH_1] = cosf(radians(_servo1_pos - _phase_angle));
_pitchFactor[CH_2] = cosf(radians(_servo2_pos - _phase_angle));
_pitchFactor[CH_3] = cosf(radians(_servo3_pos - _phase_angle));
// collective factors
_collectiveFactor[CH_1] = 1;
_collectiveFactor[CH_2] = 1;
_collectiveFactor[CH_3] = 1;
2016-05-12 13:59:30 -03:00
}else{ //H1 Swashplate, keep servo outputs separated
// roll factors
_rollFactor[CH_1] = 1;
_rollFactor[CH_2] = 0;
_rollFactor[CH_3] = 0;
// pitch factors
_pitchFactor[CH_1] = 0;
_pitchFactor[CH_2] = 1;
_pitchFactor[CH_3] = 0;
// collective factors
_collectiveFactor[CH_1] = 0;
_collectiveFactor[CH_2] = 0;
_collectiveFactor[CH_3] = 1;
}
}
// get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used)
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
uint16_t AP_MotorsHeli_Single::get_motor_mask()
{
// heli uses channels 1,2,3,4,7 and 8
return rc_map_mask(1U << 0 | 1U << 1 | 1U << 2 | 1U << 3 | 1U << AP_MOTORS_HELI_SINGLE_AUX | 1U << AP_MOTORS_HELI_SINGLE_RSC);
}
// update_motor_controls - sends commands to motor controllers
void AP_MotorsHeli_Single::update_motor_control(RotorControlState state)
{
// Send state update to motors
_tail_rotor.output(state);
_main_rotor.output(state);
if (state == ROTOR_CONTROL_STOP){
// set engine run enable aux output to not run position to kill engine when disarmed
2017-01-03 05:56:57 -04:00
SRV_Channels::set_output_limit(SRV_Channel::k_engine_run_enable, SRV_Channel::SRV_CHANNEL_LIMIT_MIN);
} else {
// else if armed, set engine run enable output to run position
2017-01-03 05:56:57 -04:00
SRV_Channels::set_output_limit(SRV_Channel::k_engine_run_enable, SRV_Channel::SRV_CHANNEL_LIMIT_MAX);
}
// Check if both rotors are run-up, tail rotor controller always returns true if not enabled
_heliflags.rotor_runup_complete = ( _main_rotor.is_runup_complete() && _tail_rotor.is_runup_complete() );
}
//
// move_actuators - moves swash plate and tail rotor
// - expected ranges:
// roll : -1 ~ +1
// pitch: -1 ~ +1
// collective: 0 ~ 1
// yaw: -1 ~ +1
//
void AP_MotorsHeli_Single::move_actuators(float roll_out, float pitch_out, float coll_in, float yaw_out)
{
float yaw_offset = 0.0f;
// initialize limits flag
limit.roll_pitch = false;
limit.yaw = false;
limit.throttle_lower = false;
limit.throttle_upper = false;
if (_heliflags.inverted_flight) {
coll_in = 1 - coll_in;
}
// rescale roll_out and pitch_out into the min and max ranges to provide linear motion
// across the input range instead of stopping when the input hits the constrain value
// these calculations are based on an assumption of the user specified cyclic_max
// coming into this equation at 4500 or less
float total_out = norm(pitch_out, roll_out);
if (total_out > (_cyclic_max/4500.0f)) {
float ratio = (float)(_cyclic_max/4500.0f) / total_out;
roll_out *= ratio;
pitch_out *= ratio;
limit.roll_pitch = true;
}
// constrain collective input
float collective_out = coll_in;
if (collective_out <= 0.0f) {
collective_out = 0.0f;
limit.throttle_lower = true;
}
if (collective_out >= 1.0f) {
collective_out = 1.0f;
limit.throttle_upper = true;
}
// ensure not below landed/landing collective
if (_heliflags.landing_collective && collective_out < (_land_collective_min/1000.0f)) {
collective_out = (_land_collective_min/1000.0f);
limit.throttle_lower = true;
}
// if servo output not in manual mode, process pre-compensation factors
if (_servo_mode == SERVO_CONTROL_MODE_AUTOMATED) {
// rudder feed forward based on collective
// the feed-forward is not required when the motor is stopped or at idle, and thus not creating torque
// also not required if we are using external gyro
if ((_main_rotor.get_control_output() > _main_rotor.get_idle_output()) && _tail_type != AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO_EXTGYRO) {
// sanity check collective_yaw_effect
_collective_yaw_effect = constrain_float(_collective_yaw_effect, -AP_MOTORS_HELI_SINGLE_COLYAW_RANGE, AP_MOTORS_HELI_SINGLE_COLYAW_RANGE);
// the 4.5 scaling factor is to bring the values in line with previous releases
yaw_offset = _collective_yaw_effect * fabsf(collective_out - _collective_mid_pct) / 4.5f;
}
} else {
yaw_offset = 0.0f;
}
// feed power estimate into main rotor controller
// ToDo: include tail rotor power?
// ToDo: add main rotor cyclic power?
if (collective_out > _collective_mid_pct) {
// +ve motor load for +ve collective
_main_rotor.set_motor_load((collective_out - _collective_mid_pct) / (1.0f - _collective_mid_pct));
} else {
// -ve motor load for -ve collective
_main_rotor.set_motor_load((collective_out - _collective_mid_pct) / _collective_mid_pct);
}
// swashplate servos
float collective_scalar = ((float)(_collective_max-_collective_min))/1000.0f;
float coll_out_scaled = collective_out * collective_scalar + (_collective_min - 1000)/1000.0f;
float servo1_out = ((_rollFactor[CH_1] * roll_out) + (_pitchFactor[CH_1] * pitch_out))*0.45f + _collectiveFactor[CH_1] * coll_out_scaled;
float servo2_out = ((_rollFactor[CH_2] * roll_out) + (_pitchFactor[CH_2] * pitch_out))*0.45f + _collectiveFactor[CH_2] * coll_out_scaled;
if (_swash_type == AP_MOTORS_HELI_SINGLE_SWASH_H1) {
servo1_out += 0.5f;
servo2_out += 0.5f;
}
float servo3_out = ((_rollFactor[CH_3] * roll_out) + (_pitchFactor[CH_3] * pitch_out))*0.45f + _collectiveFactor[CH_3] * coll_out_scaled;
// rescale from -1..1, so we can use the pwm calc that includes trim
servo1_out = 2*servo1_out - 1;
servo2_out = 2*servo2_out - 1;
servo3_out = 2*servo3_out - 1;
// actually move the servos
rc_write(AP_MOTORS_MOT_1, calc_pwm_output_1to1(servo1_out, _swash_servo_1));
rc_write(AP_MOTORS_MOT_2, calc_pwm_output_1to1(servo2_out, _swash_servo_2));
rc_write(AP_MOTORS_MOT_3, calc_pwm_output_1to1(servo3_out, _swash_servo_3));
// update the yaw rate using the tail rotor/servo
move_yaw(yaw_out + yaw_offset);
}
// move_yaw
void AP_MotorsHeli_Single::move_yaw(float yaw_out)
{
// sanity check yaw_out
if (yaw_out < -1.0f) {
yaw_out = -1.0f;
limit.yaw = true;
}
if (yaw_out > 1.0f) {
yaw_out = 1.0f;
limit.yaw = true;
}
if (_tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_DIRECTDRIVE_FIXEDPITCH){
if (_main_rotor.get_desired_speed() > 0.0f && hal.util->get_soft_armed()) {
// constrain output so that motor never fully stops
yaw_out = constrain_float(yaw_out, -0.9f, 1.0f);
// output yaw servo to tail rsc
rc_write(AP_MOTORS_MOT_4, calc_pwm_output_1to1(yaw_out, _yaw_servo));
} else {
// output zero speed to tail rsc
rc_write(AP_MOTORS_MOT_4, calc_pwm_output_1to1(-1.0f, _yaw_servo));
}
} else {
rc_write(AP_MOTORS_MOT_4, calc_pwm_output_1to1(yaw_out, _yaw_servo));
}
if (_tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO_EXTGYRO) {
// output gain to exernal gyro
2015-08-09 08:02:54 -03:00
if (_acro_tail && _ext_gyro_gain_acro > 0) {
write_aux(_ext_gyro_gain_acro/1000.0f);
2015-08-09 08:02:54 -03:00
} else {
write_aux(_ext_gyro_gain_std/1000.0f);
2015-08-09 08:02:54 -03:00
}
}
}
// write_aux - converts servo_out parameter value (0 to 1 range) to pwm and outputs to aux channel (ch7)
void AP_MotorsHeli_Single::write_aux(float servo_out)
{
rc_write(AP_MOTORS_HELI_SINGLE_AUX, calc_pwm_output_0to1(servo_out, _servo_aux));
}
// servo_test - move servos through full range of movement
void AP_MotorsHeli_Single::servo_test()
{
_servo_test_cycle_time += 1.0f / _loop_rate;
if ((_servo_test_cycle_time >= 0.0f && _servo_test_cycle_time < 0.5f)|| // Tilt swash back
(_servo_test_cycle_time >= 6.0f && _servo_test_cycle_time < 6.5f)){
_pitch_test += (1.0f / (_loop_rate / 2.0f));
_oscillate_angle += 8 * M_PI / _loop_rate;
_yaw_test = 0.5f * sinf(_oscillate_angle);
} else if ((_servo_test_cycle_time >= 0.5f && _servo_test_cycle_time < 4.5f)|| // Roll swash around
(_servo_test_cycle_time >= 6.5f && _servo_test_cycle_time < 10.5f)){
_oscillate_angle += M_PI / (2 * _loop_rate);
_roll_test = sinf(_oscillate_angle);
_pitch_test = cosf(_oscillate_angle);
_yaw_test = sinf(_oscillate_angle);
} else if ((_servo_test_cycle_time >= 4.5f && _servo_test_cycle_time < 5.0f)|| // Return swash to level
(_servo_test_cycle_time >= 10.5f && _servo_test_cycle_time < 11.0f)){
_pitch_test -= (1.0f / (_loop_rate / 2.0f));
_oscillate_angle += 8 * M_PI / _loop_rate;
_yaw_test = 0.5f * sinf(_oscillate_angle);
} else if (_servo_test_cycle_time >= 5.0f && _servo_test_cycle_time < 6.0f){ // Raise swash to top
_collective_test = 1.0f;
_oscillate_angle += 2 * M_PI / _loop_rate;
_yaw_test = sinf(_oscillate_angle);
} else if (_servo_test_cycle_time >= 11.0f && _servo_test_cycle_time < 12.0f){ // Lower swash to bottom
_collective_test = 0.0f;
_oscillate_angle += 2 * M_PI / _loop_rate;
_yaw_test = sinf(_oscillate_angle);
} else { // reset cycle
_servo_test_cycle_time = 0.0f;
_oscillate_angle = 0.0f;
_collective_test = 0.0f;
_roll_test = 0.0f;
_pitch_test = 0.0f;
_yaw_test = 0.0f;
// decrement servo test cycle counter at the end of the cycle
if (_servo_test_cycle_counter > 0){
_servo_test_cycle_counter--;
}
}
// over-ride servo commands to move servos through defined ranges
_throttle_filter.reset(_collective_test);
_roll_in = _roll_test;
_pitch_in = _pitch_test;
_yaw_in = _yaw_test;
}
// parameter_check - check if helicopter specific parameters are sensible
bool AP_MotorsHeli_Single::parameter_check(bool display_msg) const
{
// returns false if Phase Angle is outside of range
if ((_phase_angle > 90) || (_phase_angle < -90)){
if (display_msg) {
gcs().send_text(MAV_SEVERITY_CRITICAL, "PreArm: H_PHANG out of range");
}
return false;
}
// returns false if Acro External Gyro Gain is outside of range
if ((_ext_gyro_gain_acro < 0) || (_ext_gyro_gain_acro > 1000)){
if (display_msg) {
gcs().send_text(MAV_SEVERITY_CRITICAL, "PreArm: H_GYR_GAIN_ACRO out of range");
}
return false;
}
// returns false if Standard External Gyro Gain is outside of range
if ((_ext_gyro_gain_std < 0) || (_ext_gyro_gain_std > 1000)){
if (display_msg) {
gcs().send_text(MAV_SEVERITY_CRITICAL, "PreArm: H_GYR_GAIN out of range");
}
return false;
}
// check parent class parameters
return AP_MotorsHeli::parameter_check(display_msg);
}