2021-03-18 00:12:54 -03:00
|
|
|
#include "Blimp.h"
|
|
|
|
|
|
|
|
/*****************************************************************************
|
|
|
|
* The init_ardupilot function processes everything we need for an in - air restart
|
|
|
|
* We will determine later if we are actually on the ground and process a
|
|
|
|
* ground start in that case.
|
|
|
|
*
|
|
|
|
*****************************************************************************/
|
|
|
|
|
|
|
|
static void failsafe_check_static()
|
|
|
|
{
|
|
|
|
blimp.failsafe_check();
|
|
|
|
}
|
|
|
|
|
|
|
|
void Blimp::init_ardupilot()
|
|
|
|
{
|
|
|
|
|
|
|
|
#if STATS_ENABLED == ENABLED
|
|
|
|
// initialise stats module
|
|
|
|
g2.stats.init();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
BoardConfig.init();
|
|
|
|
|
|
|
|
|
|
|
|
// initialise notify system
|
|
|
|
notify.init();
|
|
|
|
notify_flight_mode();
|
|
|
|
|
|
|
|
// initialise battery monitor
|
|
|
|
battery.init();
|
|
|
|
|
|
|
|
// Init RSSI
|
|
|
|
rssi.init();
|
|
|
|
|
|
|
|
barometer.init();
|
|
|
|
|
|
|
|
// setup telem slots with serial ports
|
|
|
|
gcs().setup_uarts();
|
|
|
|
|
|
|
|
#if LOGGING_ENABLED == ENABLED
|
|
|
|
log_init();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
init_rc_in(); // sets up rc channels from radio
|
|
|
|
|
|
|
|
// allocate the motors class
|
|
|
|
allocate_motors();
|
|
|
|
|
|
|
|
// initialise rc channels including setting mode
|
|
|
|
rc().init();
|
|
|
|
|
|
|
|
// sets up motors and output to escs
|
|
|
|
init_rc_out();
|
|
|
|
|
|
|
|
|
|
|
|
// motors initialised so parameters can be sent
|
|
|
|
ap.initialised_params = true;
|
|
|
|
|
|
|
|
relay.init();
|
|
|
|
|
|
|
|
/*
|
|
|
|
* setup the 'main loop is dead' check. Note that this relies on
|
|
|
|
* the RC library being initialised.
|
|
|
|
*/
|
|
|
|
hal.scheduler->register_timer_failsafe(failsafe_check_static, 1000);
|
|
|
|
|
|
|
|
// Do GPS init
|
|
|
|
gps.set_log_gps_bit(MASK_LOG_GPS);
|
|
|
|
gps.init(serial_manager);
|
|
|
|
|
|
|
|
AP::compass().set_log_bit(MASK_LOG_COMPASS);
|
|
|
|
AP::compass().init();
|
|
|
|
|
|
|
|
#if HIL_MODE != HIL_MODE_DISABLED
|
|
|
|
while (barometer.get_last_update() == 0) {
|
|
|
|
// the barometer begins updating when we get the first
|
|
|
|
// HIL_STATE message
|
|
|
|
gcs().send_text(MAV_SEVERITY_WARNING, "Waiting for first HIL_STATE message");
|
|
|
|
delay(1000);
|
|
|
|
}
|
|
|
|
|
|
|
|
// set INS to HIL mode
|
|
|
|
ins.set_hil_mode();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// read Baro pressure at ground
|
|
|
|
//-----------------------------
|
|
|
|
barometer.set_log_baro_bit(MASK_LOG_IMU);
|
|
|
|
barometer.calibrate();
|
|
|
|
|
|
|
|
// initialise AP_Logger library
|
|
|
|
logger.setVehicle_Startup_Writer(FUNCTOR_BIND(&blimp, &Blimp::Log_Write_Vehicle_Startup_Messages, void));
|
|
|
|
|
|
|
|
startup_INS_ground();
|
|
|
|
|
|
|
|
#ifdef ENABLE_SCRIPTING
|
|
|
|
g2.scripting.init();
|
|
|
|
#endif // ENABLE_SCRIPTING
|
|
|
|
|
|
|
|
// we don't want writes to the serial port to cause us to pause
|
|
|
|
// mid-flight, so set the serial ports non-blocking once we are
|
|
|
|
// ready to fly
|
|
|
|
serial_manager.set_blocking_writes_all(false);
|
|
|
|
|
|
|
|
ins.set_log_raw_bit(MASK_LOG_IMU_RAW);
|
|
|
|
|
|
|
|
// setup fin output
|
|
|
|
motors->setup_fins();
|
|
|
|
|
|
|
|
// enable output to motors
|
|
|
|
if (arming.rc_calibration_checks(true)) {
|
|
|
|
enable_motor_output();
|
|
|
|
}
|
|
|
|
|
|
|
|
// attempt to switch to MANUAL, if this fails then switch to Land
|
|
|
|
if (!set_mode((enum Mode::Number)g.initial_mode.get(), ModeReason::INITIALISED)) {
|
|
|
|
// set mode to MANUAL will trigger mode change notification to pilot
|
|
|
|
set_mode(Mode::Number::MANUAL, ModeReason::UNAVAILABLE);
|
|
|
|
} else {
|
|
|
|
// alert pilot to mode change
|
|
|
|
AP_Notify::events.failsafe_mode_change = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
// flag that initialisation has completed
|
|
|
|
ap.initialised = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//******************************************************************************
|
|
|
|
//This function does all the calibrations, etc. that we need during a ground start
|
|
|
|
//******************************************************************************
|
|
|
|
void Blimp::startup_INS_ground()
|
|
|
|
{
|
|
|
|
// initialise ahrs (may push imu calibration into the mpu6000 if using that device).
|
|
|
|
ahrs.init();
|
|
|
|
ahrs.set_vehicle_class(AHRS_VEHICLE_COPTER);
|
|
|
|
|
|
|
|
// Warm up and calibrate gyro offsets
|
|
|
|
ins.init(scheduler.get_loop_rate_hz());
|
|
|
|
|
|
|
|
// reset ahrs including gyro bias
|
|
|
|
ahrs.reset();
|
|
|
|
}
|
|
|
|
|
|
|
|
// position_ok - returns true if the horizontal absolute position is ok and home position is set
|
|
|
|
bool Blimp::position_ok() const
|
|
|
|
{
|
|
|
|
// return false if ekf failsafe has triggered
|
|
|
|
if (failsafe.ekf) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// check ekf position estimate
|
|
|
|
return (ekf_has_absolute_position() || ekf_has_relative_position());
|
|
|
|
}
|
|
|
|
|
|
|
|
// ekf_has_absolute_position - returns true if the EKF can provide an absolute WGS-84 position estimate
|
|
|
|
bool Blimp::ekf_has_absolute_position() const
|
|
|
|
{
|
|
|
|
if (!ahrs.have_inertial_nav()) {
|
|
|
|
// do not allow navigation with dcm position
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// with EKF use filter status and ekf check
|
|
|
|
nav_filter_status filt_status = inertial_nav.get_filter_status();
|
|
|
|
|
|
|
|
// if disarmed we accept a predicted horizontal position
|
|
|
|
if (!motors->armed()) {
|
|
|
|
return ((filt_status.flags.horiz_pos_abs || filt_status.flags.pred_horiz_pos_abs));
|
|
|
|
} else {
|
|
|
|
// once armed we require a good absolute position and EKF must not be in const_pos_mode
|
|
|
|
return (filt_status.flags.horiz_pos_abs && !filt_status.flags.const_pos_mode);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ekf_has_relative_position - returns true if the EKF can provide a position estimate relative to it's starting position
|
|
|
|
bool Blimp::ekf_has_relative_position() const
|
|
|
|
{
|
|
|
|
// return immediately if EKF not used
|
|
|
|
if (!ahrs.have_inertial_nav()) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// return immediately if neither optflow nor visual odometry is enabled
|
|
|
|
bool enabled = false;
|
|
|
|
if (!enabled) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// get filter status from EKF
|
|
|
|
nav_filter_status filt_status = inertial_nav.get_filter_status();
|
|
|
|
|
|
|
|
// if disarmed we accept a predicted horizontal relative position
|
|
|
|
if (!motors->armed()) {
|
|
|
|
return (filt_status.flags.pred_horiz_pos_rel);
|
|
|
|
} else {
|
|
|
|
return (filt_status.flags.horiz_pos_rel && !filt_status.flags.const_pos_mode);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// returns true if the ekf has a good altitude estimate (required for modes which do AltHold)
|
|
|
|
bool Blimp::ekf_alt_ok() const
|
|
|
|
{
|
|
|
|
if (!ahrs.have_inertial_nav()) {
|
|
|
|
// do not allow alt control with only dcm
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// with EKF use filter status and ekf check
|
|
|
|
nav_filter_status filt_status = inertial_nav.get_filter_status();
|
|
|
|
|
|
|
|
// require both vertical velocity and position
|
|
|
|
return (filt_status.flags.vert_vel && filt_status.flags.vert_pos);
|
|
|
|
}
|
|
|
|
|
|
|
|
// update_auto_armed - update status of auto_armed flag
|
|
|
|
void Blimp::update_auto_armed()
|
|
|
|
{
|
|
|
|
// disarm checks
|
|
|
|
if (ap.auto_armed) {
|
|
|
|
// if motors are disarmed, auto_armed should also be false
|
|
|
|
if (!motors->armed()) {
|
|
|
|
set_auto_armed(false);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// if in stabilize or acro flight mode and throttle is zero, auto-armed should become false
|
|
|
|
if (flightmode->has_manual_throttle() && ap.throttle_zero && !failsafe.radio) {
|
|
|
|
set_auto_armed(false);
|
|
|
|
}
|
|
|
|
// if heliblimps are on the ground, and the motor is switched off, auto-armed should be false
|
|
|
|
// so that rotor runup is checked again before attempting to take-off
|
|
|
|
if (ap.land_complete && motors->get_spool_state() != Fins::SpoolState::THROTTLE_UNLIMITED && ap.using_interlock) {
|
|
|
|
set_auto_armed(false);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
should we log a message type now?
|
|
|
|
*/
|
|
|
|
bool Blimp::should_log(uint32_t mask)
|
|
|
|
{
|
|
|
|
#if LOGGING_ENABLED == ENABLED
|
|
|
|
ap.logging_started = logger.logging_started();
|
|
|
|
return logger.should_log(mask);
|
|
|
|
#else
|
|
|
|
return false;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
// return MAV_TYPE corresponding to frame class
|
|
|
|
MAV_TYPE Blimp::get_frame_mav_type()
|
|
|
|
{
|
2021-03-29 11:43:54 -03:00
|
|
|
return MAV_TYPE_QUADROTOR; //TODO: Mavlink changes to allow type to be correct
|
2021-03-18 00:12:54 -03:00
|
|
|
}
|
|
|
|
|
|
|
|
// return string corresponding to frame_class
|
|
|
|
const char* Blimp::get_frame_string()
|
|
|
|
{
|
2021-03-29 11:43:54 -03:00
|
|
|
return "AIRFISH"; //TODO: Change to be able to change with different frame_classes
|
2021-03-18 00:12:54 -03:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
allocate the motors class
|
|
|
|
*/
|
|
|
|
void Blimp::allocate_motors(void)
|
|
|
|
{
|
|
|
|
switch ((Fins::motor_frame_class)g2.frame_class.get()) {
|
|
|
|
case Fins::MOTOR_FRAME_AIRFISH:
|
|
|
|
default:
|
|
|
|
motors = new Fins(blimp.scheduler.get_loop_rate_hz());
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (motors == nullptr) {
|
|
|
|
AP_HAL::panic("Unable to allocate FRAME_CLASS=%u", (unsigned)g2.frame_class.get());
|
|
|
|
}
|
|
|
|
AP_Param::load_object_from_eeprom(motors, Fins::var_info);
|
|
|
|
|
|
|
|
// reload lines from the defaults file that may now be accessible
|
|
|
|
AP_Param::reload_defaults_file(true);
|
|
|
|
|
|
|
|
// param count could have changed
|
|
|
|
AP_Param::invalidate_count();
|
|
|
|
}
|