ardupilot/libraries/AP_Proximity/AP_Proximity_AirSimSITL.cpp

102 lines
3.1 KiB
C++
Raw Normal View History

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <AP_HAL/AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
#include "AP_Proximity_AirSimSITL.h"
#include <stdio.h>
extern const AP_HAL::HAL& hal;
#define PROXIMITY_MAX_RANGE 100.0f
#define PROXIMITY_ACCURACY 0.1f
// update the state of the sensor
void AP_Proximity_AirSimSITL::update(void)
{
SITL::vector3f_array &points = sitl->state.scanner.points;
if (points.length == 0) {
set_status(AP_Proximity::Status::NoData);
return;
}
set_status(AP_Proximity::Status::Good);
memset(_distance_valid, 0, sizeof(_distance_valid));
for (uint16_t i=0; i<points.length; i++) {
Vector3f &point = points.data[i];
if (point.is_zero()) {
continue;
}
const float angle_deg = wrap_360(degrees(atan2f(-point.y, point.x)));
const uint8_t sector = convert_angle_to_sector(angle_deg);
const Vector2f v = Vector2f(point.x, point.y);
const float distance_m = v.length();
if (distance_m > distance_min()) {
if (_last_sector == sector) {
if (_distance_m_last > distance_m) {
_distance_m_last = distance_m;
_angle_deg_last = angle_deg;
}
} else {
// new sector started, previous one can be updated
_distance_valid[_last_sector] = true;
_angle[_last_sector] = _angle_deg_last;
_distance[_last_sector] = _distance_m_last;
// update boundary
update_boundary_for_sector(_last_sector, true);
// initialize new sector
_last_sector = sector;
_distance_m_last = INT16_MAX;
_angle_deg_last = angle_deg;
}
} else {
_distance_valid[sector] = false;
}
}
#if 0
printf("npoints=%u\n", points.length);
for (uint16_t i=0; i<PROXIMITY_NUM_SECTORS; i++) {
printf("sector[%u] ang=%.1f dist=%.1f\n", i, _angle[i], _distance[i]);
}
#endif
}
// get maximum and minimum distances (in meters) of primary sensor
float AP_Proximity_AirSimSITL::distance_max() const
{
return PROXIMITY_MAX_RANGE;
}
float AP_Proximity_AirSimSITL::distance_min() const
{
return 0.0f;
}
// get distance upwards in meters. returns true on success
bool AP_Proximity_AirSimSITL::get_upward_distance(float &distance) const
{
// we don't have an upward facing laser
return false;
}
#endif // CONFIG_HAL_BOARD