ardupilot/ArduCopterMega/flight_control.pde

157 lines
3.3 KiB
Plaintext
Raw Normal View History

/*************************************************************
throttle control
****************************************************************/
// user input:
// -----------
void output_manual_throttle()
{
rc_3.servo_out = (float)rc_3.control_in * angle_boost();
}
// Autopilot
// ---------
void output_auto_throttle()
{
rc_3.servo_out = (float)nav_throttle * angle_boost();
// make sure we never send a 0 throttle that will cut the motors
rc_3.servo_out = max(rc_3.servo_out, 1);
}
void calc_nav_throttle()
{
// limit error
long error = constrain(altitude_error, -300, 300);
if(altitude_sensor == BARO) {
float t = pid_baro_throttle.kP();
if(error > 0){
//pid_baro_throttle.kP(.25);
}else{
pid_baro_throttle.kP(t/4.0);
}
// limit output of throttle control
nav_throttle = pid_baro_throttle.get_pid(error, delta_ms_fast_loop, 1.0);
nav_throttle = throttle_cruise + constrain(nav_throttle, -20, 70);
pid_baro_throttle.kP(t);
} else {
// SONAR
nav_throttle = pid_sonar_throttle.get_pid(error, delta_ms_fast_loop, 1.0);
// limit output of throttle control
nav_throttle = throttle_cruise + constrain(nav_throttle, -60, 100);
}
}
float angle_boost()
{
// This is the furture replacement for the heavyweight trig functions in use now.
//Matrix3f temp = dcm.get_dcm_matrix();
//cos_pitch = sqrt(1 - (temp.c.x * temp.c.x));
//cos_roll = dcm.c.z / cos_pitch;
//static byte flipper;
//float temp = 1 / (cos(dcm.roll) * cos(dcm.pitch));
float temp = cos(dcm.roll) * cos(dcm.pitch);
temp = 2.0 - constrain(temp, .7071, 1.0);
return temp;
}
/*************************************************************
yaw control
****************************************************************/
void output_manual_yaw()
{
if(rc_3.control_in == 0){
clear_yaw_control();
} else {
// Yaw control
if(rc_4.control_in == 0){
//clear_yaw_control();
output_yaw_with_hold(true); // hold yaw
}else{
output_yaw_with_hold(false); // rate control yaw
}
}
}
void auto_yaw()
{
output_yaw_with_hold(true); // hold yaw
}
/*************************************************************
picth and roll control
****************************************************************/
/*// how hard to tilt towards the target
// -----------------------------------
void calc_nav_pid()
{
// how hard to pitch to target
nav_angle = pid_nav.get_pid(wp_distance * 100, dTnav, 1.0);
nav_angle = constrain(nav_angle, -pitch_max, pitch_max);
}
// distribute the pitch angle based on our orientation
// ---------------------------------------------------
void calc_nav_pitch()
{
// how hard to pitch to target
long angle = wrap_360(nav_bearing - dcm.yaw_sensor);
bool rev = false;
float roll_out;
if(angle > 18000){
angle -= 18000;
rev = true;
}
roll_out = abs(angle - 18000);
roll_out = (9000.0 - roll_out) / 9000.0;
roll_out = (rev) ? roll_out : -roll_out;
nav_pitch = (float)nav_angle * roll_out;
}
// distribute the roll angle based on our orientation
// --------------------------------------------------
void calc_nav_roll()
{
long angle = wrap_360(nav_bearing - dcm.yaw_sensor);
bool rev = false;
float roll_out;
if(angle > 18000){
angle -= 18000;
rev = true;
}
roll_out = abs(angle - 9000);
roll_out = (9000.0 - roll_out) / 9000.0;
roll_out = (rev) ? -roll_out : roll_out;
nav_roll = (float)nav_angle * roll_out;
}
*/